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1. Introduction 
 

Optimization methodologies constitute the 

cornerstone of modern scientific discovery, 

engineering innovation, and decision-making 

processes across diverse domains. As 

computational capabilities expand and 

problem complexity intensifies, the field of 

optimization continues to evolve at an 

unprecedented pace. This review synthesizes 

recent advancements and paradigm shifts in 

optimization research, examining how novel 

algorithms, interdisciplinary approaches, and 

emerging technologies are reshaping solution 

strategies for increasingly complex challenges. 

The accelerated development is evidenced by 

the fact that over 300 new metaheuristic 

methodologies have emerged within the last 

decade, reflecting the field's vigorous 

expansion (Selvarajan, 2024). Contemporary 

Recent years have witnessed a paradigm shift 

toward algorithms modeled on specialized 

behaviors and niche evolutionary adaptations. 

The 2024 introduction of Painting Training 

Based Optimization (PTBO) exemplifies this 

trend, translating human creative processes 

into an optimization framework that 

demonstrates competitive performance on the 

CEC 2011 test suite, outperforming 

established algorithms like Grey Wolf 

Optimizer (GWO) and Harris Hawks 

Optimization (HHO) across all 22 constrained 

optimization problems (Amin & Dehghani, 

2025). 

PTBO's position update for artist 𝑖 follows: 

X𝑖
(𝑡+1) 

= X𝑖
(𝑡) + 𝛼̨ (X 𝑏𝑒𝑠𝑡  − X𝑖

(𝑡)) 
 

 
 

optimization transcends traditional boundaries, master imitation (𝑡) 

integrating insights from artificial intelligence, 

quantum computing, materials science, and 

statistical theory to address problems ranging 

from sustainable energy systems to precision 

medicine. This review systematically 

examines current trends, theoretical 

breakthroughs, and practical applications that 

define the state of optimization science in 

2025, providing researchers with a 

comprehensive reference for navigating this 

rapidly advancing domain. 

 

2. Nature-Inspiredandmetaheuristic 

Optimization 

The proliferation of bio-inspired optimization 

algorithms continues to dominate the 

landscape of heuristic approaches, drawing 

inspiration from increasingly diverse 

biological systems and natural phenomena. 

+ 𝛽𝑢_(_−_1_,_1_)_⊙ (_X
(
_
𝑡)
_𝑟𝑎_𝑛𝑑 − X_𝑖 _ )̧  

  

creative exploration 

Where 𝛼 = 𝛼0𝑒−𝑡/𝑇, 𝛽 ~ Cauchy (0,1) and ⊙ 
denotes element-wise multiplication. 

This human-inspired approach represents a 

significant departure from traditional 

evolutionary and swarm-based methods, 

highlighting the field's expanding conceptual 

horizons. 

Metaheuristic strategies have evolved toward 

specialized hybridization to overcome 

limitations of standalone approaches. The 

Fossa Optimization Algorithm  combines 

predatory search patterns with social hierarchy 

dynamics to enhance convergence properties, 

V𝑖
(𝑡) = 𝜔V𝑖 

(𝑡−1) + 𝑐1𝑟1(X𝛼 − X𝑖
(𝑡)) 

+ 𝑐2𝑟2(X𝛽 − X𝑖(𝑡)) + 𝑐3𝑟3(Xẟ 

− X𝑖
(𝑡)) 
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X𝑖
(𝑡+1) = X𝑖

(𝑡) + V𝑖 
(𝑡) + 𝜎𝑁(0,1) 

· 𝑒−‖X𝛼−X𝑖
(𝑡)‖ 

Where X𝛼, X𝛽, Xẟ represents dominant 

solutions. 

while the Spider-Tailed Horned Viper 

𝑃(𝑡+1) = 𝐺(𝑃(𝑡))   ℳ(X𝑖
(𝑡)) 

Where     represents  genetic  operators 

(crossover/mutation), and ℳ denotes 
migration patterns. The exploration- 

exploitation trade-off is quantified by: 
𝑁 

Optimization integrates specialized predation 

mechanisms with evolutionary operators 

(Amin   &   Dehghani,   2025).   These 

 

 With 

Φ(𝑡) = 
1 
∑‖X (𝑡) − X (𝑡)‖ 

𝑁 𝑖 2 
𝑖=1 

· 𝑒−𝜆𝑡 

hybridizations reflect a growing recognition 

that complex optimization landscapes require 

balanced exploration-exploitation strategies. 

As noted by researchers, "The observed trend 

indicates an increasing acknowledgement of 

the effectiveness of bio-inspired 

methodologies in tackling intricate 

engineering problems, providing solutions that 

exhibit rapid convergence rates and 

unmatched fitness scores" (Selvarajan, 2024). 

 

Table1:ClassificationofContemporary 

Metaheuristic Approaches 

 
Category Representativ 

e Algorithms 
Key 
Innovations 

Application 
Domains 

Swarm 

Intelligence 

Draco Lizard 

Optimizer, 

Wombat 

Optimization 

Niche 

foraging 

behaviors, 

collective 

tunneling 

Supply 

chain 

optimization 

, energy 

systems 

Evolutionar 

y Methods 

Genetic 

Algorithms, 

Differential 

Evolution 

Adaptive 

mutation 

operators, 

parallel island 

models 

Aerospace 

design, 

computation 

al biology 

Human- 

Inspired 

PTBO, 

Sculptor 

Optimization 

Creative 

process 

modeling, 

apprenticeshi 

p learning 

Engineering 

design, 

creative 

industries 

Physics- 

Based 

Simulated 

Annealing, 

Gravitational 

Search 

Quantum- 

inspired 

tunneling, 

relativistic 

effects 

Molecular 

dynamics, 

materials 

science 

Theoretical understanding of population 

dynamics and convergence behavior in 

metaheuristics has deepened substantially. 

Recent analyses employ Markov chain 

modeling and computational statistics to 

quantify exploration-exploitation trade-offs, 

providing mathematical justification for 

parameter adaptation strategies (Selvarajan, 

2024). 

For a population 𝑃 = {X1, X2, . . . , X𝑁} at 

iteration t, the state transition is governed by: 

λ controlling the decay rate of 
exploration diversity. 

This theoretical grounding addresses long- 

standing criticisms regarding the empirical 

nature of many metaheuristics. However, the 

No Free Lunch theorem continues to 

underscore the importance of domain-specific 

algorithm selection, as no single optimizer 

demonstrates universal superiority across all 

problem classes (Amin & Dehghani, 2025). 

 

3. Quality-Diversityandmultimodal 

Optimization 

Quality-Diversity(QD) optimization represents 

a paradigm shift in evolutionary computation 

by aiming to generate not only the best 

solutions but also a diverse set of high- 

performing alternatives. This is particularly 

beneficial in domains such as robotics, product 

design, procedural content generation, and 

synthetic biology, where multiple distinct yet 

competitive solutions are more desirable than 

a single global optimum. 

 

3.1 MAP-Elites Algorithm 

A foundational method in QD optimization is 

the MAP-Elites (Multi-dimensional Archive 

of Phenotypic Elites) algorithm. It partitions 

the behavior space into a grid (niches), each 

representing a different type of solution 

behavior or characteristic, and seeks the best- 

performing individual (elite) in each niche. 

 

Algorithmic Flow: 

1. Initialization:Randomlygenerateapopulatin 

of candidate solutions. 

2. Evaluation: For each candidate 𝑥, evaluate 

both the objective function 𝑓(𝑥) and its 

behavioral descriptor 𝜙(𝑥). 

3. Archive Update: Place the candidate in the 

corresponding  cell  𝑐  of  a  discretized 
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∑ 

behavior space ℬonly if it outperforms the 

current elite 𝑥𝑐* in that cell: 

𝑥 * = arg   
max  

𝑓(𝑥), where 𝑐 
𝑐 𝑥 ∈ cell 𝑐 

= 𝜙(𝑥) 
4. Variation: Apply genetic operators (e.g., 

mutation, crossover) to elites and repeat the 

process. 

The final output is not a single solution but a 

map of diverse, high quality solutions, 

offering a toolbox for flexible deployment in 

uncertain or changing environments. 

 

3.2 Multimodal Optimization and MMDE 

Incontrast,MultimodalOptimizationalgorithm 

s aim to locate multiple optima (both global 

and local) in the fitness landscape, making 

them highly suitable for problems with 

multiple valid answers. One of the prominent 

approaches is the Multimodal Differential 

Evolution (MMDE) algorithm. 

MMDE extends the classical Differential 

Evolution (DE) by integrating diversity- 

preserving mechanisms such as fitness 

sharing, crowding, or speciation. 

The mutation step in standard DE is: 

𝑣𝑖
(𝑡) = 𝑥𝑟1

(𝑡) + 𝐹 · (𝑥𝑟2
(𝑡) − 𝑥𝑟3

(𝑡)) 

where 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3 are randomly selected 

individuals and 𝐹 is a scaling factor. 

To promote diversity and discourage 

convergence to a single optimum, fitness 

sharing modifies the fitness value of each 

individual 𝑥𝑖 as: 
 𝑓(𝑥𝑖)  𝑓 (𝑥 ) = 

Both QD and multimodal optimization are 

highly applicable in: 

 Robotics: Generating diverse locomotion 

patterns. 

 Antenna design: Finding multiple 

configurations with similar radiation 

properties. 

 Drug design: Identifying chemically 

diverse compounds with comparable 

efficacy. 

Furthermore, hybrid approaches are 

emerging that combine QD methods like 

MAP-Elites with multimodal techniques 

(e.g., clustering-enhanced DE) to exploit 

both diversity and performance in high- 

dimensional or deceptive search spaces. 

As observed by Chauhan et al. (2025), these 

strategies provide robust search capabilities 

in complex real-world optimization problems, 

offering both innovation and flexibility 

across disciplines. 

 

4. AI-Driven Optimization Paradigms 

The fusion of artificial intelligence with 

optimization has catalyzed transformative 

methodologies that redefine problem solving 

capabilities. Data-centric optimization 

represents a fundamental shift from 

algorithm-centric approaches, emphasizing 

the critical role of data quality in determining 

optimization outcomes. Research indicates 

that specialized AI applications require 

customized datasets, with limitations in large 

language  models  becoming  particularly 
𝑖 𝑁 

j=1 𝑠𝑕(𝑑𝑖j) evident when processing complex scientific 
data structures such as chemical compounds, 

with the sharing function defined as: knowledge graphs, and time-series 
  𝑑 1 − ( 𝛼 if 𝑑 < 𝜎 

𝑠𝑕(𝑑𝑖j) = { ) σshare 𝑖j share information (CAS., 2024). This recognition 

 
where: 

0 otherwise has spurred the development of compound 

AI  systems  that  integrate  multiple  data 

 𝑑𝑖j is the Euclidean distance between 

individuals 𝑥𝑖 and 𝑥j, 

 𝜎share is the niche radius, 

 𝛼 is the sharing exponent controlling decay. 

These mechanisms allow the population to 

maintain niching behavior, thus converging to 

multiple optima simultaneously. 

 

3.3 Applications and Integration 

sources and employ "mixture of experts" 

approaches, substantially reducing 

hallucination incidents and improving 

solution fidelity in domains like drug 

repurposing and computer-aided design 

(CAS., 2024). 

Learning-based optimization frameworks 

have emerged as particularly promising 

approaches. Optimization-augmented neural 

networks incorporate combinatorial layers 
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that enable end-to-end training of contextual 

multi-stage decision policies (LION19., 

2025). 

computational resources across varying model 

accuracy levels. 

arg min 
y = ‖z − 𝖶h‖2 

z ∈ 𝒞 
2 + λℛ(z) 

5. MathematicalFoundationsandInnovations 

Themathematicalunderpinningsof optimization 

Where 𝒞 is a feasible set (e.g., routing 

constraints), h is hidden state, and ℛ(·) is a 

regularizer. Differentiable optimization is 
achieved via implicit differentiation: 

theory continue to advance through 

developments in variational analysis and 

nonsmooth optimization. Recent work extends 

proximal  point  methods  to  nonmonotone 
𝜕y 

 
 

𝜕𝖶 
= −(A2zz ℒ)−1  

𝜕 

𝜕𝖶 
(Azℒ) 

settings, enabling more effective handling of 

nonconvex objectives prevalent in engineering 

with ℒ the Lagrangian. 
These frameworks demonstrate exceptional 

performance in dynamic environments, 

evidenced by their winning solutions in the 

2022 EUROMeetsNeurIPS vehicle routing 

challenge. The paradigm encompasses two 

principal methodologies: 

1. Learning by Experience: Agents explore 

decision spaces through reinforcement 

mechanisms, developing optimization policies 

that maximize long-term rewards in uncertain 

environments. 

2. Learning by Imitation: Neural architectures 

distill heuristics from expert demonstrations, 

approximating complex optimization logic 

through differentiable programming. 

The integration of surrogate modeling with 

Bayesian optimization has yielded significant 

efficiency improvements for problems 

involving computationally expensive 

evaluations. 

Surrogate model using 𝑘: 

𝑓(X) ~ GP(𝑚(X), 𝑘(X, X′)) 
Expected improvement (EI) acquisition: 

𝐸𝐼(X) = E [max(𝑓(X) − 𝑓(X+),0)] 
= 𝜎(X) [𝗒(X) Φ(𝗒(X)) 
+ 𝜙(𝗒(X))] 

where 𝗒(X) = 𝑚(X)−𝑓(X
+) , and Φ , 𝜙 are 

CDF/PDF of 𝒩(0,1). 

Current research focuses on sustainability- 
aware implementations that minimize energy 

consumption during optimization processes. 

As Antonio Candelieri notes, "By replacing 

the expensive objectives with a surrogate 

model, computational resources can be saved 

that would otherwise be allocated to running 

heavy physics simulators" (LION19., 2025). 

Multi-fidelity approaches further enhance this 

efficiency   by   strategically   allocating 

applications and machine learning (Grad et al. 

2025; Rigó et al., 2025). 

For nonsmooth 𝑓 = 𝑔 + 𝑕∶ 
X𝑘+1 = proxλ 𝑕 (X𝑘 − λ𝑘A𝑔(X𝑘)) 

where proxλ𝑕(z) = arg minu*𝑕(u) + 
1 ‖u − z‖2}. 
2λ 

Convergence is guaranteed when λ𝑘 > 𝐿g 
(Lipschitz constant). 

The forthcoming special issue "Optimization 

and Variational Analysis in 2025" in the 

Journal of Optimization Theory and 

Applications highlights emerging research in 

splitting algorithms for composite 

optimization, which decompose complex 

problems into tractable subproblems while 

preserving convergence guarantees (Rigó et al., 

2025). These theoretical advances facilitate 

solutions to previously intractable problems in 

mathematical finance and large-scale network 

optimization. 

Nonconvex optimization has seen particularly 

significant theoretical breakthroughs, 

especially in understanding the geometric 

properties of loss landscapes in 

overparameterized systems. Research into 

high-dimensional solution spaces reveals that 

carefully designed optimization trajectories 

can avoid spurious local minima, explaining 

the surprising efficacy of gradient-based 

methods in deep learning architectures (Rigó 

et al., 2025). This understanding has informed 

the development of escape heuristics that 

actively navigate saddle points in nonconvex 

landscapes, substantially improving 

convergence rates in training generative 

adversarial networks and transformer 

architectures. 
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Copositive optimization approaches their 75th 

anniversary with renewed theoretical and 

practical relevance. Modern research focuses 

on reformulating difficult combinatorial and 

polynomial optimization problems through 

copositive relaxations, yielding tighter convex 

approximations than traditional semi definite 

programming approaches (Rigó et al., 2025). 

Waste management optimization represents 

another frontier, with hydrothermal 

carbonization technologies converting wet 

biomass into hydrochar for energy generation 

and soil conditioning. Advanced algorithms 

optimize conversion efficiency while 

minimizing hazardous byproducts, particularly 

in processing electronic waste and recovering 
min 

X ∈ 𝒞𝒪𝒫𝑛 
(C, X⟩ s. t. (A𝑖, X⟩ = 𝑏𝑖 

strategic materials like lithium and cobalt 

(CAS., 2024). These approaches align with 

where 𝒞𝒪𝒫𝑛 = {M ∶ v𝑇Mv ≥ 0  ∀v ≥ 0}. 
The forthcoming anniversary special issue 

aims to consolidate historical developments 

while highlighting computational 

breakthroughs that have transformed 

copositive methods from theoretical curiosities 

into practical tools for quadratic assignment 

problems and maximum clique optimization. 

 

6. InterdisciplinaryApplicationsand 

Domain-Specific Advances 

6.1.SustainableSystemsandClimate 

Optimization 

Optimization methodologies play increasingly 

critical roles in addressing climate challenges 

and advancing sustainability initiatives. Metal- 

organic frameworks (MOFs) and covalent 

organic frameworks (COFs) exemplify 

materials science innovations optimized for 

environmental applications, with BASF 

pioneering commercial-scale production of 

MOFs for carbon capture due to their 

exceptional surface area and tunable properties 

(CAS., 2024). 

MOF-based Carbon Capture: 

Aldsoption maximization: 
max 𝑃 

Qco2(𝜙) = ∫ Г(𝜙, 𝑝)𝑑𝑝 
𝜙 

  𝜃  𝑛 

circular economy principles by transforming 

waste streams into valuable resources through 

optimized conversion processes. 

 

Table2:OptimizationApplicationsin 

Sustainability Domains 

 
Application 
Domain 

Optimization 
Methods 

Key Metrics Impact 
Potential 

Renewable 

Energy 

Integration 

Stochastic 

programming, 
Multi- 

objective 

optimization 

Energy yield, 

Grid 
stability, 

Storage 

efficiency 

30-50% 
reduction in 
renewable 

intermittency 

issues 

Solid-State 

Batteries 

Topology 
optimization, 

Bayesian 

materials 
design 

Energy 
density, 

Charge 

cycles, 
Safety 

performance 

50% size 
reduction in 

EV batteries 

by 2028 

Plastic 

Recycling 

Enzymatic 
process 

optimization, 
Flow control 

Monomer 
regeneration 

rate, Purity 
thresholds 

70% PET 
recycling 
efficiency 
through 

bacterial 

processing 

Smart 

Grids 

Decentralized 

optimization, 

Real-time 
pricing 

Load 

balancing, 

Transmission 
loss, 

Resilience 

40% 
demand- 

response 

efficiency 
improvement 

 

 

6.2.HealthcareandPrecisionMedicine 

Optimization 

Thehealthcare sector demonstrates particularly 
sophisticatedapplicationsofoptimization 1 − ( ) 

Г(𝜙, 𝑝) = 𝐾 (𝜙)𝑝 
 𝜃𝑚𝑎𝑥  

𝐿 1 + 𝐾𝐻(𝜙)𝑝 
where 𝜙 are MOF topology parameters. 

Optimization-driven designs of MOF-based 

coatings for  air  conditioning systems 

demonstrate   40% energy reduction  in 

humidity  extraction,  highlighting the 

significant   impact   of  computational 

optimization on energy efficiency (CAS., 

2024). 

technologies.CRISPR-basedtherapeutic 

development employs optimization algorithms 

at multiple stages, from guide RNA design to 

delivery vector optimization. 
min 

[−on − target efficiency (g), off 
g 

− target score (g), GC content dev (g)]𝑇 
subject to g ∈ *A, U, G, C}𝐿 and ‖g‖ = 20. 

Cutting-edge approaches now optimize base 

editing and epigenetic modulation parameters, 

enabling more precise genetic interventions 
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with reduced off-target effects (CAS., 2024). 

Optimization has also enhanced CAR-T cell 

therapies through knockout of inhibitory genes 

and introduction of controllable safety 

switches,creatingpersonalizedimmunotherapie 

s with improved efficacy profiles. 

Molecular editing technologies represent 

another breakthrough, with optimization 

algorithms enabling precise atom-level 

modifications to existing molecular scaffolds. 

This approach substantially reduces synthetic 

steps compared to traditional de novo 

synthesis, decreasing toxic solvent use and 

energy requirements while expanding 

accessible chemical space for drug discovery 

(CAS., 2024). Combined with AI-based 

synthetic pathway optimization, these 

techniques promise to accelerate 

pharmaceutical innovation by enabling more 

efficient exploration of molecular frameworks. 

 

6.3 Intelligent Transportation and Logistics 

Autonomoussystems optimization increasingly 

integrates combinatorial optimization with 

deep learning for real-time decision-making. 

The 2025 LION conference highlights 

methods that embed optimization layers within 

neural networks, enabling end-to-end learning 

of routing policies that adapt to dynamic 

7. Emerging Computational Platforms 

Quantum optimization approaches transition 

from theoretical constructs to practical tools, 

with 2025 designated as the International Year 

of  Quantum   Science  and   Technology. 

Cleveland Clinic and IBM have installed the 

first  quantum  computer   dedicated  to 

healthcare    research,  tackling   molecular 

simulation problems that exceed classical 

computational  capabilities (CAS.,  2024). 

Current research    focuses    on  quantum 

algorithms for protein folding prediction and 

materials  discovery,  potentially   reducing 

computation times for complex molecular 

dynamics   from  years   to    hours.  Early 

applications    in   agriculture     demonstrate 

quantum     optimization   of  fertilizer 

formulations and field monitoring strategies, 

suggesting near-term practical impact beyond 

theoretical domains (CAS., 2024). 

High-performance optimization computing 

leverages advances in hardware architecture to 

solve previously intractable problems. 

For combinatorial problems: 

|𝗒, 𝛽 ⟩ = 𝑒−𝑖𝛽𝑝𝐻𝐵𝑒−𝑖𝗒𝑝𝐻𝐶 · · 

· 𝑒−𝑖𝛽1𝐻𝐵𝑒−𝑖𝗒1𝐻𝐶|+ ⟩  𝑛 

min 

𝗒, 𝛽 
(𝗒, 𝛽 |𝐻𝐶| 𝗒, 𝛽 ⟩ 

where  𝐻  is  the  cost  Hamiltonian,  and 
environmental conditions (LION19., 2025). 
These approaches demonstrate particular 𝐻𝐵 = 

𝐶 
∑𝑖 𝜎𝑖

𝑥 
drives transitions. 

efficacy in multi-agent transportation systems, 

where they optimize fleet coordination while 

balancing competing objectives like fuel 

efficiency, service equity, and response times. 

Supply chain optimization has embraced novel 

metaheuristics like the Wombat Optimization 

Algorithm (WOA), which models burrow 

network dynamics to solve complex logistics 

problems with disrupted flows and stochastic 

demands (Amin & Dehghani, 2025). These 

approaches demonstrate superior performance 

in resilient supply chain design, incorporating 

real-world   constraints  like  transportation 

fragility,  inventory   uncertainty,  and 

sustainability  requirements that  challenge 

traditional   mathematical   programming 

techniques. 

Heterogeneous computing platforms integrate 

GPUs, TPUs, and specialized AI accelerators 

to parallelize population-based metaheuristics 

and decomposition algorithms. The SIAM 

Journal on Optimization highlights 

implementations achieving three orders of 

magnitude speedup for stochastic gradient 

descent in large-scale neural network training 

through innovative parallelization strategies 

(SIAM., 2025). These hardware-aware 

optimization approaches co-design algorithms 

and computing architectures, maximizing 

resource utilization while minimizing energy 

consumption, a critical consideration given 

AI's growing environmental footprint. 
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8. EmergingMethodologiesandFuture 

Directions 

Human-inspired optimization continues to 

diversify beyond traditional nature-inspired 

paradigms. Recent methodologies include 

Sales Training Based Optimization (modeling 

knowledge transfer in commercial training), 

Sculptor Optimization (emulating artistic 

refinement processes), and Dollmaker 

Optimization (inspired by iterative design 

refinement) (Amin & Dehghani, 2025). These 

approaches demonstrate competitive 

performance on engineering design problems, 

suggesting that human creative and 

pedagogical processes offer rich metaphors for 

optimization strategy development. Their 

effectiveness appears particularly pronounced 

in supply chain management applications, 

where they outperform established bio- 

inspired algorithms on real-world 

implementation challenges (Amin & Dehghani, 

2025). 

Multi-agent optimization frameworks address 

complex coordination challenges in sharing 

economy platforms and virtual power plants. 

Modern approaches incorporate partial 

rationality and bounded rationality into agent 

models, recognizing that human participants 

rarely exhibit perfect optimization behavior 

(LION19., 2025). 

Agent i’s response: 

characteristics. Current approaches employ 

deep reinforcement learning to construct 

adaptive portfolios that switch optimization 

strategies based on landscape analysis and 

runtime performance metrics (LION19., 2025). 

These systems demonstrate promising results 

on the BBOB (Black-Box Optimization 

Benchmark) testbed, suggesting potential for 

autonomous optimization systems that 

continuously refine their approach based on 

problem characteristics and accumulated 

experience. 

 

9. Conclusion and Research Challenges 

The optimization landscape continues to 

evolve toward greater interdisciplinary 

integration and specialization. Bio-inspired 

algorithms maintain their relevance through 

continuous hybridization and theoretical 

refinement, while AI-driven approaches 

transform optimization from standalone 

algorithms into embedded components of 

learning systems. The convergence of 

statistical learning and optimization theory 

opens new avenues for understanding 

generalization in overparameterized models, 

promising tighter integration between learning 

theory and optimization practice (OPT., 2025). 

Several critical challenges demand research 

attention. Algorithm selection methodologies 

require  further  development  to  guide 

𝑢 (𝑡) = arg 
min 

[𝐽 (𝑢 , 𝑢 
𝑖 𝑢𝑖 

𝑖 𝑖 −𝑖 
(𝑡−1)) 

practitioners through the expanding optimizer 

landscape. Sustainability considerations must 

+ 𝜌𝐷KL(𝑢𝑖‖𝑢𝑖
(𝑡−1))] 

where 𝐷KL quantifies deviation from previous 

strategy, and 𝜌 is rationality parameter. 

The LION19 conference highlights 

applications in Tesla Virtual Power Plant and 

similar systems, where optimization 

algorithms balance energy distribution while 

accommodating participant behaviors that 

deviate from purely rational economic models 

(LION19., 2025). These approaches employ 

nonlinear control theory and probabilistic 

fairness guarantees to ensure system stability 

despite unpredictable human factors. 

The algorithm selection problem remains a 

fundamental challenge, prompting research 

into meta-optimization frameworks that 

dynamically  match  solvers  to  problem 

become central to optimization research, 

addressing both the environmental impact of 

optimization computations and their 

application to climate challenges. Ethical 

optimization frameworks need development to 

ensure equitable outcomes in socially 

impactful applications like healthcare resource 

allocation and algorithmic decision-making. 

The rapid proliferation of optimization 

techniques necessitates renewed emphasis on 

reproducibility and benchmarking standards. 

Community efforts like the CEC test suites 

and LION competitions provide valuable 

evaluation platforms, but require expansion to 

cover emerging problem classes like multi- 

objective reinforcement learning and large- 

scale  nonconvex  optimization  (Amin  & 

http://www.ijmsrt.com/
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Dehghani, 2025; OPT., 2025). As optimization 

permeates increasingly consequential domains, 

maintaining scientific rigor while encouraging 

methodological innovation represents the 

field's central challenge moving forward. 
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