GWO-HHO Hybrid: Strengthening Grey Wolf Optimizer with Harris Hawks Strategy for Numerical Optimization

Surabhi Atara; Shantanu Patil; Sandhya Dahake Department of Master in Computer Application, GHRCEM, Nagpur, Maharashtra, India

Abstract

Optimization algorithms play a crucial role in solving complex numerical problems across diverse domains. This paper presents a hybrid Grey Wolf Optimizer (GWO) and Harris Hawks Optimization (HHO) algorithm, designed to improve solution accuracy and convergence efficiency. The proposed hybrid leverages GWO's structured leadership-based exploration with HHO's dynamic and adaptive hunting strategies, ensuring a balanced trade- off between exploration and exploitation. performance of the hybrid GWO-HHO algorithm twenty-three benchmark evaluated on functions, and its results are compared with the original GWO. It is observed that the proposed hybrid approach achieves higher accuracy and improved optimization efficiency. In this paper GWO algorithm is combined with HHO algorithm for numerical optimization.

Keywords:

GWO-HHO, Hybrid, Optimization, Exploration, Exploitation

I.Introduction

Meta-heuristic optimization techniques have gained significant attention due to their ability to solve complex numerical and realworld problems. Among these, the Grey Wolf Optimizer (GWO), inspired by the leadership and hunting strategies of grey wolves, has been widely used for its simplicity and efficiency in maintaining a balance between exploration exploitation [1]. However, GWO faces challenges such as slow convergence and premature stagnation in local optima. To address these issues, Harris Hawks Optimization (HHO), inspired by adaptive transition strategies, makes it a strong pack for hybridization with GWO [2]. The integration of GWO and HHO aims to leverage GWO's structured leadership-based search mechanism with aggressive exploration and adaptive strategies, ensuring a more balanced approach to global and local search. This hybridization enhances diversity in the search process, reduces the risk of convergence, premature and improves convergence speed, making it suitable for solving high dimensional and multi-objective optimization problems [4]. The proposed GWO-HHO hybrid algorithm is evaluated on twenty- three benchmark functions, and the results showed improved performance.

IJMSRT25JUN003 www.ijmsrt.com 009

DOI: https://doi.org/10.5281/zenodo.15589397

ii. Literature Review

Nature-based algorithms mimic natural processes such as animal behaviour or ecological systems. Evolutionary-based algorithms evolve a population of solutions using selection, crossover, and mutation. Physics-based algorithms leverage physical laws to explore search spaces effectively. Human-based algorithms are inspired by human learning, decision-making, and social behaviours.



Fig1: Classification of Meta heuristic Algorithms

Sr		Author	Publication
N	Algorithm	Name	Year
0.			
1	Ant Colony	Dorigo &	1997
	Optimization	Gambardella	
	(ACO)		
2	Firefly	Xin-She	2008
	Algorithm	Yang	
	(FA)		
3	Genetic	John	1975
	Algorithm	Holland	
	(GA)		
4	Differential	Rainer	1995
	Evolution	Storn &	
	(DE)	Kenneth	
		Price	
5	Simulated	Scott	1983
	Annealing	Kirkpatric k,	
	(SA)	C. D. Gelatt,	
		M. P. Vecchi	
6	Harmony	ZongWoo	2001
	Search(HS)	Geem,	
		Joong	
		Hoon Kim & G.V.	
		G. v. Loganathan	
7	England		2014
7	Exchange Morlest	Ali	2014
	Market	Asgharpoor & Amir	
	Algorithm (EMA)	Hossein	
	(EMA)	Moosavi	
		Tabatabaei	
8	Tabu Search	Fred W.	1986
	(TS)	Glover w.	1700
	(15)	Giovei	

DOI: https://doi.org/10.5281/zenodo.15589397

Table1:

For Each Search Agent Update The Position

Table1: Metaheuristic Algorithms

1. Pseudo Code

Initialize The Grey Wolf Population Xi (I = 1, 2, ..., N) Initialize A, A, And C Calculate The Fitness Of Each Search Agent X α =The Best Search Agent X β =The Second Best Search Agent X δ =The Third Best Search Agent **While** (T Max Number Of Iterations) (3.7)

OThe Current Search Agent By Equation End For

Update A, A, And C Calculate The Fitness Of All Search Agents Update $X\alpha$, $X\beta$, And $X\delta$ T+1

End While Return Xa

2. Benchmark Functions

Benchmark Functions Are Crucial In Evaluating Optimization Algorithms By Testing Their Ability To Find The Global Minimum In Complex Landscapes. These Functions Range From Simple Convex Ones Like Sphere To Highly Multimodal And Deceptive Ones Like Rastrigin And Schwefel. They Help Measure The Convergence Speed, Accuracy, And Robustness Of Algorithms Like The Grey Wolf Optimizer (GWO). Below Is A Brief Explanation Of The Twenty- Three Benchmark Functions Used In GWO, Along With Their Mathematical Equations.

Functions	Dimensions	Range	Linin
$F_1(S) = \sum_{m=1}^{2} S_m^2$	(10,30,50,100)	[-100, 100]	0
$F_2(S) = \sum_{m=1}^{g} S_m + \prod_{m=1}^{g} S_m $	(10,30,50,100)	[-10,10]	0
$F_2(S) = \sum_{m=1}^{2} (\sum_{n=1}^{m} S_n)^2$	(10,30,50,100)	[-100,100]	0
$F_4(S) = \max_{m} \{ S_m , 1 \le m \le z \}$	(10,30,50,100)	[-100, 100]	0

$F_5(S) = \sum_{m=1}^{2-1} \left[100(S_{m+1} - S_m^2)^2 + (S_m - 1)^2 \right]$	(10,30,50,100)	[-38, 38]	0
$F_6(S) = \sum_{m=1}^{2} ([S_m + 0.5])^2$	(10,30,50,100)	[-100, 100]	0
$F_{7}(S) = \sum_{m=1}^{3} mS_{m}^{4} + random[0,1]$	(10,30,50,100)	[-1.28, 1.28]	0

IJMSRT25JUN003 www.ijmsrt.com 011

$F_{g}(S) = \sum_{m=1}^{z} -S_{m}sin(\sqrt{ S_{m} })$	(10,30,50,100)	[-500,500]	-418.98295
$F_9(S) = \sum_{m=1}^{x} [S_m^2 - 10\cos(2\pi S_m) + 10]$	(10,30,50,100)	[-5.12,5.12]	0
$F_{10}(S) = -20exp\left(-0.2\sqrt{\left(\frac{1}{x}\sum_{m=1}^{x}S_{m}^{2}\right)}\right) - exp\left(\frac{1}{x}\sum_{m=1}^{x}cos(2\pi S_{m}) + 20 + d\right)$	(10,30,50,100)	[-32,32]	0
$F_{11}(S) = 1 + \sum_{m=1}^{z} \frac{s_{m}^{2}}{4000} - \Pi_{m=1}^{z} \cos \frac{s_{m}}{\sqrt{m}}$	(10,30,50,100)	[-600, 600]	0
$F_{-1}(S) = -\frac{\pi}{3} \{10 \sin(\pi \tau_{-}) + \sum_{z=1}^{z-1} (\tau_{-} - 1)^{2} [1 + \frac{\pi}{3}] \}$	(10,30,50,100)	[-50,50]	0

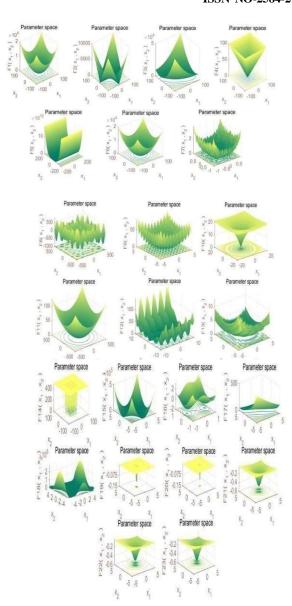
$F_{12}(S) = \frac{\pi}{z} \left\{ 10 \sin(\pi \tau_1) + \sum_{m=1}^{z-1} (\tau_m - 1)^2 [1 + \frac{1}{z}] \right\}$	(10,30,50,100)	[-50,50]	0
$10sin^{2}(\pi\tau_{m+1})] + (\tau_{z} - 1)^{2} + \sum_{m=1}^{z} u(S_{m}, 10, 100, 4)$			
$\tau_m = 1 + \frac{s_m + 1}{4}$			
$u(S_m, b, x, i) = \begin{cases} x(S_m - b)^i & S_m > b \\ 0 & -b < S_m < b \\ x(-S_m - b)^i & S_m < -b \end{cases}$			
$F_{12}(S) = 0.1\{sin^{2}(3\pi S_{m}) + \sum_{m=1}^{z} (S_{m} - 1)^{2}[1 + sin^{2}(3\pi S_{m} + 1)] + (x_{2} - 1)^{2}[1 + sin^{2}2\pi S_{z}]\}$	(10,30,50,100)	[-50,50]	0

$F_{14}(S) = \left[\frac{1}{800} + \sum_{n=1}^{3} 5 \frac{1}{n + \sum_{m=1}^{2} (S_m - \delta_{mn})^2}\right]^{\frac{1}{2}}$	2	[-65.536, 65.536]	1
$F_{15}(S) = \sum_{m=1}^{11} \left[b_m - \frac{S_1(a_m^2 + a_m S_5)}{a_m^2 + a_m S_5 + S_4} \right]^2$	4	[-5, 5]	0.00030
$F_{16}(S) = 4S_1^2 - 2.1S_1^4 + \frac{1}{3}S_1^6 + S_1S_2 - 4S_2^2 + 4S_2^4$	2	[-5, 5]	-1.0316
$F_{17}(S) = (S_2 - \frac{8.1}{4\pi^2}S_1^2 + \frac{5}{\pi}S_1 - 6)^2 + 10(1 - \frac{1}{9\pi})\cos S_1 + 10$	2	[-5, 5]	0.398
$F_{yy}(S) = \left[1 + (S_1 + S_2 + 1)^2 \left(19 - 14S_1 + 3S_1^2 - 14S_2 + 6S_2 + 3S_2^2\right)\right] \times \left[30 + (2S_1 - 3S_1)^2 \left(18 - 32S_1 + 12S_1^2 + 48S_2 - 36S_1S_2 + 27S_1^2\right)\right]$	2	[-2,2]	3
$F_{19}(S) = -\sum_{m=1}^{4} d_m \exp\left(-\sum_{n=1}^{3} S_{mn} (S_m - q_{mn})^2\right)$	3	[1, 3]	-3.32
$F_{20}(S) = -\sum_{m=1}^{4} d_m \exp(-\sum_{n=1}^{6} S_{mn}(S_m - q_{mn})^2)$	6	[0, 1]	-3.32
$F_{21}(S) = -\sum_{m=1}^{5} [(S - b_m)(S - b_m)^T + d_m]^{-1}$	4	[0,10]	-10.1532

$F_{22}(S) = -\sum_{m=1}^{7} [(S - b_m)(S - b_m)^T + d_m]^{-1}$	4	[0, 10]	-10.4028
$F_{23}(S) = -\sum_{m=1}^{7} [(S - b_m)(S - b_m)^T + d_m]^{-1}$	4	[0, 10]	-10.5363

3. Search Space

The search space is the range of possible solutions in an optimization problem, bounded by upper and lower limits. A larger space allows better exploration but increases complexity, while a smaller one speeds up convergence but may miss the optimal solution. Efficient algorithms balance both for optimal results.



4. Results & Discussions

The proposed hybrid GWO-HHO algorithm demonstrates significant improvements over the original GWO algorithm in numerical optimization. Out of the twenty-three benchmark functions tested, enhancements were observed in fourteen cases (1,2,3,4,5,6,8,10,11,15,20,21,22,23),

IJMSRT25JUN003 www.ijmsrt.com 012

Functions	Original Value	Hybrid Value
F1	6.18E-28	zzjwiza valac
		1.0754E-21
F2	2.98E-16	2.77E-13
F3	6.23E-06	1.88E-01
F4	5.92E-07	3.33E-02
F5	27.0188	26.5475
F6	1.2563	0.75304
F7	0.0013123	0.0044082
F8	-6344.7997	-5417.6748
F9	5.68E-14	1.83E+01
F10	1.46E-13	1.38E-12
F11	0.011816	0
F12	0.021455	0.035293
F13	0.5825	0.69339
F14	0.998	0.998
F15	0.00041885	0.00030755
F16	-1.0316	-1.0316
F17	0.39789	0.39789
F18	3.0001	3
F19	-3.8557	-3.8626
F20	-3.322	-3.196
F21	-10.1512	-5.0552
F22	-10.4014	-5.0877
F23	-10.5333	-5.1284

www.ijmsrt.com IJMSRT25JUN003 013 showcasingbetter optimization performance. While some values remained unchanged and others exhibited fluctuations, overall results highlight the effectiveness of the hybrid approach in achieving more optimal and precise solutions. The following analysis further explores these findings in detail.

Conclusion

This research improves the performance of the Grey Wolf Optimization Algorithm using the Hybridization approachof (GWO+HHO). Out of twenty-three benchmark functions, fourteen functions achieved better optimal values compared to the original one, demonstrating an improvement in GWO's performance

References

S. Mirjalili, S.M. Mirjalili and A. Lewis, "Grey wolf optimizer," Advances in Engineering Software, vol. 69, pp. 4661, 2014, doi: 10.1016/j.advengsoft.2013.12.007

A. A. Heidari et al., "Harris hawks optimizationAlgorithm and applicat

X. Wang, T.M. Choi, H Liu, and X. Yue, "A novelhybrid optimization algorithm for emergency transportation problems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, doi: 10.1109/TSMC.2016.2606440.

R. V. Rao and G. G. Waghmare, "A new optimization algorithm for solving complex constrained design optimization problems," vol. 0273, no. April, 2016, doi:

10.1080/0305215X.2016.1164855. R. V. Rao and G. G. Waghmare, "A new optimization algorithm for solving complex constrained design optimization problems," vol. 0273, no. April, 2016, doi: 10.1080/0305215X.2016.1164855.

D. Yousri, T. S. Babu, and A. Fathy, "Recent methodology based Harris hawks optimizer for designing load frequency control incorporated in multi- interconnected renewable energy plants," Sustain. Energy, Grid Networks, 2020, doi: 10.1016/j.segan.2020.100352.

Y. Cheng, S. Zhao, B. Cheng, S. Hou, Y. Shi, and J. Chen, "Modeling and optimization for collaborative business process towards IoT applications," Mob. Inf. Syst., 2018, doi: 10.1155/2018/9174568.

DOI: https://doi.org/10.5281/zenodo.15589397