A Comprehensive Review of Deep Learning Architectures for Task specific Analysis

Sahil Bhardwaj

School of Engineering and Technology, KR Mangalam University, Gurugram, India Rishav Kumar School of Engineering and Technology, KR Mangalam University, Gurugram, India, Ayush Verma School of Engineering and Technology, KR Mangalam University, Gurugram, India Dr. Solanki Gupta

School of Engineering and Technology, KR Mangalam University, Gurugram, India

Abstract

Deep learning has truly changed the game across numerous fields, reshaping how we tackle complex challenges by providing highly precise and efficient solutions tailored to particular needs. Just picture a system that can create text, summarize information, translate languages, classify data, answer questions, and even reasondeep learning makes all of this a reality. In this review, we took a closer look at different deep learning architectures and how they drive these various see applications. We analysed the past studies and reveal the datasets that power these models, as well as the design principles influence their performance. that Throughout this we emphasized the strengths that set these architectures apart, along with the limitations that pose challenges to their effectiveness. This review acts as a guide for researchers, practitioners, and industry professionals, helping them choose and adapt the right deep learning models for specific tasks.

Keywords: Deep Learning, Deep Learning Architectures, Task Specific Review, Systematic Review

1. Introduction

Deep learning is a subfield of machine learning and artificial intelligence that attempts to model the way humans learns from information to extract patterns for decision-making. Neural networks that have multiple layers are used to deal with large data. Through these layers, deep learning models can learn complicated Patterns and representations, making them efficient for many applications, including recognition, image natural language processing (NLP), and speech recognition. The very idea that deep learning embodies is that it allows machines to learn directly from data in their raw form, such as an image with its associated text or audio, without human intervention in feature extraction. This process favours neural networks made up of nodes or interconnected neurons, which adjust their weight and biases during training to minimize errors and increase accuracy. What holds the transition from classical machine learning to deep learning is that the classical machine is doing manual feature extraction, while deep networks are learning directly from raw data. Classical machine learning works great with small datasets but often struggles to infer on complicated patterns, while deep learning works exceptionally well with large datasets, achieving reasonable accuracy for image recognition and NLP. On the other hand, deep learning does require the use ofGraphics Processing Units (GPUs) orTensor Processing Units (TPUs) for processing power, whereas traditional machine learning could run just fine on standardCentral Processing Units(CPUs). Traditionally machine learning methods are applied to structured data, while deep

learning suits unstructured data applications. This evolution has come into place under the influence of computing becoming inexpensive, power the existence of big data, and user-friendly frameworks such as TensorFlow and PyTorch. Task-specific analysis in deep learning is important since tasks have individual architectural needs for achieving the best performance. Text generation. for instance. necessitates coherence contextual and flow. SO Transformers [99] such as Generative Pretrained Transformer (GPT)[100] are best suited because they process sequential data. Summarization is about extracting the gist of a text, where sequence-tosequence models with attentionsuch as Text-to-Text Transfer Transformer (T5)[101] orBidirectional and Auto-Regressive Transformers(BART)[102] are used to emphasize significant input Translation needs segments. precise language mapping, which is strength of encoder-decoder architectures. Classification is aided by less complex architectures such as Convolutional Neural Networks(CNNs) fine-tuned or Bidirectional Encoder Representations from Transformers (BERT)[103] models for effective feature extraction. Question contextual answering (QA) requires awareness to provide accurate answers, utilizing models such as BERT with attention. Reasoning requires logical conclusions and multi-step processes, necessitating sophisticated models such as GPT-4 [104] with memory layers. Adapting architectures to task requirements provides improved performance and more accurate outcomes. Deep learning applications in any specific task encounter challenges such as limited availability of data and lack of quality annotation, which leads to problems in model training and generalization. While complex architectures prevent overfitting at times, highly skilled regularization may be demanded. These models are often black boxes, making them hard to

interpret; interpretability is critical for tasks sensitive like healthcare. Generalization is difficult. requiring intense fine-tuning and transfer learning. Computational demands are high, thus increasing the cost and energy. Other ethical concerns include the biases embedded in them, which may lead to failure in achieving fair outcomes. Realtime tasks face problems caused by latency, making their deployment in the interactive environment harder. Besides, all these challenges require model design, data preparation, and constant monitoring to be addressed. A review paper that systematically takes into account these questions, datasets employed, the rationale behind their design, and the pros and cons of various models would provide valuable insights into problems related to taskspecific deep learning applications. Therefore, the major objectives of this study are to explore:

- The deep learning architectures that are most commonly used across different tasks.
- The datasets utilized in these studies and the principles behind their design.
- The strengths and weaknesses of various models.

To start the review, we identified key realworld applications of deep learning, including text generation. text classification. reading comprehension, summarization, reasoning, translation, and question answering, as fundamental tasks for analysis.By looking at the functionality and performance of model architectures with respect to these tasks, this review help understand would us model complexity and overfitting issues and reach suggestions for reasonable regularization strategies. An evaluation of strong and weak points of different models would help in proposing interpretable and generalizable architectures by reducing the behavior of a deep learning model as a black box. It would also offer guidance for data quality and availability by addressing the most efficient datasets and consequent

thereby leading drawbacks, to better strategies for dataset selection and augmentation. Further, this review study would the serve as perfect guide forunderstandingthe efficient model for different task-specific deep learning applications.

2. Systematic Review& Analysis

To provide a detailed overview of deep learning architectures tailored for specific tasks, we decided to use a systematic review methodology. We selected the seven popular tasks namely Reading Comprehension, Translation, Summarization, Question Answering, Reasoning, Generation, and Classification. For data collection, we systematically searched "Google Scholar" Database using a combination of keywords like "deep architectures". learning "task-specific applications, "text generation", "text classification", "reading comprehension", "summarization", "reasoning", "translation" and "Question Answering". This method offers a structured way to analyze existing literature, emphasizing the identification, selection, and synthesis of studies that enhance our understanding of deep learning applications (Figure 1).A thorough analysis of individual task is elaborated in the following subsections,

Figure 1: Research Design and methodology

2.1 Task 1-Reading Comprehension

Reading comprehension (RC) is an assignment brought forth to measure the extent to which a machine is capable of interpreting natural languages by having the machine respond to questions about a presented context, and it has the power to change the manner in which humans and machines communicate with one another. The application of deep learning expands over various industries that copy human understanding reading and abilities. Healthcare. Education. Legal and compliance, Finance, News Media and Government are some of the popular examples of this [1]. It also increases productivity and accuracy in reviewing legal documents and ensuring compliance, saving time and reducing human error [2]. Before the commencement of deep

learning, traditional reading comprehension systems were used which relied on rule-based approaches and machine learning techniques. shallow Rule-based approaches were based on predefined rules and heuristics and this might rely on keyword or simple algorithms to find out and extract essential information from text.Shallow machine learning approaches used basic machine learning techniques such as Support Vector Machines (SVMs), Decision Trees, and Naive Bayes classifiers. Features like word n-grams, frequencies, and syntactic structures were often used to represent text. There were limitations of these preapproaches. Traditional deep learning methods could not fully understand the context or subtle nuances of language, which is crucial for reading comprehension. Rule-based systems were inflexible, while shallow machine learning

methods relied heavily on handcrafted features that didn't generalize well across tasks. As the amount of text data grew, these approaches struggled to scale and didn't perform well in comparison to human-level comprehension. Deep learning revolutionized reading comprehension by offering models that could automatically learn from huge amounts of data and adapt to various language complexities. The major turning **Table 1**: Summers of Popular Studies on Pos point came with the introduction of Recurrent Neural Network (RNNs), Long Short-Term Memory (LSTM)[3] networks, and later, Transformer-based models. It has its limitations too. It requires large datasets and high computational power for training. It can inherit biases from the training data, leading to unfair or discriminatory outcomes. A detailed overview of various models used in RC, its limitations and key takeaways are provided in Table 1.

Models	Datasets	Key takeaways	Limitations	References
BERT, RoBERTa DistilBERT, ALBERT	ReClor	 ALBERT is the best model in this paper, so far. Polytuplet loss improves accuracy by 5.6%-11.7% over baseline models like ALBERT, BERT, and DistilBERT. 	 The comparison is limited to baseline models, without evaluating techniques. Scalability to large datasets or real-world tasks remains unaddressed. 	[5]
T5 base model BART base model GPT-2 model	Fairytale QA Corpus Textbook Question Answering (TQA) dataset	1. The paper compares differentdifferentarchitecturesforautomaticquestiongenerationbasedonreading comprehensionpassages2. HighlightsthestrengthsandweaknessesofvariousQuestionGenerationmodels.	 The paper focuses on a narrow set of models, lacking comparison with a broader range of question generation techniques. The evaluation metrics used might not fully capture the complexity of question quality. 	[6]
Stanford AR GA Reader	Who-Did- What (WDW) Children's Book Test (CBT)	1. The paper compares word embedding techniques like GloVe, Word2Vec and fastText for reading comprehension tasks. 2.Embedding effectiveness varies based on task and dataset.	 Focus is less on word embedding models. The paper doesn't provide detailed insights into why some embeddings perform better than others. 	[7]

 Table 1: Summary of Popular Studies on Reading Comprehension Task

		1		
RCNs BERT GPT RNN CNN	CNN &Daily Mail CBT LAMBADA CLOTH RACE SQUAD	 The paper proposes a neural network-based model that reads and understands a passage to answer questions without requiring task- specific feature engineering. It utilizes attention mechanisms to focus on relevant parts of the text, improving the model's comprehension ability. 	 The model's achievement heavily relies on the quality and size of the training data. The model requires significant computational resources, especially for large-scale datasets and complex attention mechanisms. 	[8]
BERT RoBERTa Cross- Document Reasoning Models Textual Entailment Models	TriviaQA Web DuReader	 The paper introduces a model that performs reading comprehension across multiple documents, capturing information from diverse sources to answer questions. Attention mechanisms have been used to attention the model's reasoning process at the most relevant parts of the files. 	1. The method includes complicated architectures that can be computationally expensive, requiring sizable resources for schooling and inference, particularly with huge file sets. 2. The model doesn't provide fine-grained control over which documents or pieces of information are prioritized in the reasoning process.	[9]
Co-match BERT	MCTest CNN/Daily Mail RACE	1.BERT performed higherhigheraccuracy compared to the Co- match model on the Vietnamese corpus.2. It targetsmultiple- choicecomprehension questions, where the model selects the most appropriateappropriateanswer based on the given passage.	1. The study is tailored to Vietnamese, limiting its applicability to other languages with different linguistic structures.2. The paper primarily compares a few deep learning models (RNNs, LSTMs, and BERT), without considering a broader range of models or alternative architectures.	[10]
T5 BERT	DROP	1. The proposed method demonstrates significant improvements over	1. Performance is reliant on the availability of annotated sub-	[11]

	1	1	1	
		baseline models,	questions, and weak	
		achieving higher F1	supervision can only	
		scores on the hard	partially alleviate the	
		subset of the DROP	data limitation	
		detect	2 The success of the	
		dataset.	2. The success of the	
		2. A single model is	model relies on the	
		used for both question	accuracy of the	
		decomposition and	question	
		reading	decomposition	
		comprehension.	process, which remains	
		simplifying the	a challenging task	
		arabitactura	a chancinging task.	
D: CDU			1 171	[10]
BI-GRU	CNN/Daily	1. Improves query-	1. The system can	[12]
Encoder	Mail	document interaction	misunderstand	
		for improved answer	ambiguous requests.	
		selection.	2. Attention	
		2. Surpasses state-of-	mechanisms	
		the-art models on	incurcomputation cost	
		CNN/Daily Mail and	incurcomputation cost.	
		CPTest detests		
		CBTest datasets.		54.03
LSTMs	SQuAD	I. Splits MRC into	1. Difficulty in dealing	[13]
		Cloze-fashion, multi-	with lengthy text	
		preference, span-	passages, resulting in	
		prediction, and free-	loss of contextual	
		form question	pertinence.	
		answering	2 Needs huge-scale	
		2 Dro advantad modela	labelled detegate to	
		(DEDT CDT)	labelled datasets to	
		(BERI, GPI,)	prevent overfitting.	
		outperform baseline		
		strategies in contextual		
		comprehension.		
GPT-FT	COSMOS	1. The paper introduces	1. The model might	[14]
	OA	a model that integrates	struggle to generalize	
	X	contextual	to very diverse or	
		componsonso	uncommon knowledge	
		knowledge to immerse	that is not well	
		knowledge to improve	that is not well-	
		machine reading	represented in the	
		comprehension,	commonsense	
		enabling better	knowledge base.	
		understanding beyond	2. Integrating	
		explicit information in	contextual	
		the text.	commonsense	
		2 The model tailoring	reasoning adda	
		2. The model tanorning	adds	
		knowledge application		
		to the specific reading	complexity, which can	
		passage and question.	slow down training	
			and inference times.	

2.2 Task 2-Translation

Translation deals with transforming information from one language to another. The primary objective is to automatically translate text from one language into another via deep learning models. The

translation is an example of sequence-tosequence learning, wherein both the input and output are word sequences. The translation has a wide range of applications in diverse fields. Computer aids such as Microsoft Translator and Google Translate have made cross-lingual communication simpler. These processes utilize neural machine translation based on deep learning systems to translate text, audio, and images instantly[15]. Companies offer customer services in a variety of languages instantly by using translational model[16]. Translational model used in hospitals and clinics assist health professionals to interpret with patients communicating in eliminating other languages thus miscommunication [17]. Prior to the onset of deep learning, machine translation and language processing involved rule-based methods and statistical approach. This method was dependent upon linguistic rules as well as a dictionary for interpretation of text into languages. Rule-Based system made use of the rules of

grammar to transfer the words and expressions of a word from one word to another word. Statistical Machine Translation arrived later in the 1980s and was based on probability models to figure out the most appropriate translation of the given sentence against texts that have been translated among languages. It has some limitations to it. The translation was not up to the point and was always grammatically improper, particularly to long sentences. Rule-basedmethod took hard work and didn't scale very efficiently to new words. Statistical techniques had competitors regarding handling new terminology and uncommon languages. With the onset of deep learning, issues were mainly vanquished Neural via Machine Translation, where an enormous neural net is employed in modelling translation of complete sentences. NMT, particularly with the arrival of the Transformer model, really improved translation to a large degree by understanding the context and dependency over long distances. A detailed overview of models utilized in Translation, its limits and important lessons are summarized in Table 2.

Models	Datasets	Key Takeaways	Limitations	References
Deep	WMT'15	1. The research proves	1. Training deep NMT	[18]
Transition	English-	that extra profound	models is time-	
RNNs	German (En-	architectures,	consuming and	
Stacked	De)	specifically deep	computationally	
RNNs Bi-	Byte Pair	transition RNNs and	steeply-priced, making	
Deep RNN	Encoding	stacked RNNs,	them much less	
Architecture	(BPE)	decorate neural gadget	scalable for large-scale	
	WMT'14	translation (NMT)	programs.	
	English-	accuracy.	2. Although the	
	French (En-	2. Increasing version	consequences are	
	Fr)	intensity (up to eight	encouraging, the	
		layers) assists in taking	generalizability of the	
		snap shots greater	method to different	
		state-of-the-art	language pairs or	
		linguistic styles,	domain names is but to	
		enhancing translation	be hooked up.	
		accuracy.		
Vanilla	WMT'15	1. Using deeper	1. The Transformer and	[19]
Seq2Seq	English-	fashions, mainly with	bidirectional models	
Model	German Task	interest mechanisms,	required longer	

-								
Table 2: S	ummary o	of Pop	ular S	Studies	on '	Transl	ation	Task

RNNs leads to seriously education times. CRUs better translation 2.Take models showed LSTMs 2.The models showed 2.Take na look at frequently specializes Models 2.Take models showed duries in English- French translation Transformer WMT'16 1.Deepning the Transformer model results in improved transformer model results in improved transformer model results in improved transformer.Deep are frequently specializes [20] Transformer WMT'16 1.Deepning the Transformer model results in improved transformer.Deep are frequently computationally transformer model renglish (Zh- En-Small) 1.Deeproved difficult to train of targers in the encoder and decoder enhances and decoder enhances transformer model and leaver translation quality over conventional fixed-layer models. 2.Because of the model's depth, it is hard to process a conventional fixed-layer models. DTMT WMT'14 1.Bloating the Transformer-Deep can be challenging to train transformer model to results in proves within the encoder and decoder pairs well with transformer model and memory limitations. [21] DTMT WMT'14 1.Bloating the Transformer-Deep can be challenging to train transformer-Deep can be challenging to train transformer-Deep can be challenging to train translation spectacularity compa	DATAT		1 1 / 1	1 (* (*	
GRUs LSTMsbetter excellent.translation excellent.2.Taken a look at requently specializes duties in English- German and English-French, 	RNNS		leads to seriously	education times.	
LSTMsexcellent. 2.The models showed study overall performance across both English-German and English-French, confirming their versatility.frequently specializes duties in English- French translation duties, which can be every pretty excessive- resource language pairs.[20]Transformer ModelsWMT16 English- De) Task Task English (Zh- En-Large) Task1. Deepening their versatility.I. Deep models such as Transformer model translation quality, particularly when utilizing dynamic layer combinations (DLCL). 2.Employing a dynamic combination of layers in the encoder and decoder enhances translation quality over combinations (DLCL).[20]DTMT Vanilla Encoder- Decoder ModelWMT14 Hen utilizing dynamic transformer model super sinte encoder and ecoder enhances translation quality over combinations (DLCL). combinations (DLCL). combinations (DLCL). transformer model frask when utilizing dynamic transformer model1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory timitations.[21]DTMT Vanilla Encoder- Decoder ModelWMT14 Hen utilizing dynamic combination of layers within the encoder and decoder pairs well with translation quality compared to traditional constant-layer models1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]Vanilla Encoder DecoderWMT Hen utilizing dynamic combination of layers within the encoder and decoder pairs well with transfalton spectacular	GRUs		better translation	2. Taken a look at	
2.The models showed study overall performance across both English-French, confirming their versatility.duties in English- German and English-French, constraints.Transformer ModelsWMT'16 English- German (En- De) Task NIST'121.Deepening the Transformer work utilizing dynamic layer combination quality, particularly when translation quality, particularly when translation quality, English (Zh- English (Zh- En-Small)1.Deeping the Transformer model translation quality, demanding and may prove difficult to train constraints.1.Deep models such as transformer Deep are translation quality, demanding and may prove difficult to train and memory constraints.[20]DTMT VanilaWMT'14 English- German (En- Decoder Decoder Decoder Decoder Decoder1.Bloating translation quality over conventional fixed- layer models.1.Deep models such as to process a conventional fixed- layer models.[21]TASKWMT'14 translation quality over conventional fixed- layer models.1.Deep models such as transformer prodel on regular hardware because of processing and memory limitations.[21]TASK1.Bloating translation quality over combination DLCL.1.Deep models such as transformer prodel to process a compared to traditional combination puerter very effective for low-paralel-data[21]VanillaWMT task1.Bloating translation quality when utilizing dynamic combination DLCL.1.Deep models such as transformer-Deep can be challenging to train and memory imitations.[21]VanillaWMT <td>LSTMs</td> <td></td> <td>excellent.</td> <td>frequently specializes</td> <td></td>	LSTMs		excellent.	frequently specializes	
Image: study overall performance across both English-German and English-French, confirming their 			2. The models showed	duties in English-	
PrescriptionFrench translation duties, which can be every pretty excessive- resource language pairs.Transformer Models DLCLWMT'161. Deepening tessuits in improved transformer model translation quality.1. Deep models such as transformer-Deep are highly computationally demanding and may prove difficult to train on regular hardware because of processing and memory constraints.[20]DTMT VanillaWMT'16 English- Chinese- English (Zh- En-Small)1. Beating transformer model translation quality over combinations (DLCL) 2. Employing a and decoder enhances transformer models.1. Deep models such as memory constraints.[21]DTMT VanilaWMT'14 English- En-Large) Task1. Bloating the transformer model.1. Deep models such as constraints.[21]DTMT VanilaWMT'14 English- En-Large) Task1. Bloating the transformer model.1. Deep models such as complete batch on one GPU.DTMT VanilaWMT'14 English- German (En- Decoder De Vanila1. Bloating the netoder and decoder pairs well with transformer model.1. Deep models such as transformer model.ModelWMT Multi30k1. Bloating transformer model.1. Deep models such as transformer model.Vanilla Encoder- Decoder ModelsWMT transformer model.1. Deep models such as transformer model.Vanilla Encoder- Decoder Models1. WrtT transformer models1. Net models transformer transformer transformer transformerModels BERT Odels </td <td></td> <td></td> <td>study overall</td> <td>German and English-</td> <td></td>			study overall	German and English-	
Partonian OctrosPartonian Octrosboth English-German and English-French, confirming their versatility.duties, which can be every pretty excessive- resource language pairs.Transformer ModelsWMT'16 English- DLCL1. Deepening the Transformer model1. Deep models such as transformer model[20]DLCLGerman (En- Chinese- English (Zh- En-Small)1. Deepning the translation quality, particularly when Othinese- English (Zh- En-Small)1. Deepning the transformer model1. Deep models such as transformer Deep are bighly computationally demanding and may prove difficult to train on regular hardware because of processing and ecoder enhances transformer model2. Employing a and ecoder enhances transformer model2. Because of the model's depth, it is hard to process a complete batch on one GPU.DTMT Vanilla Encoder- Decoder Transformer Model1. Bloating transformer model1. Deep models such as transformer model[21]Transformer ModelWMT'14 WSLT'151. Bloating translation, particularly when utilizing dynamic combinations DLCL.1. Deep models such as transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]Vanilla Encoder- DecoderWMT translation spectacularity compared to traditional constant-layer models.1. NMT models need large data sets to effectively train. 2. NMT models can inder and COCO[22]Vanilla BERT GPTWMT1. Pretrained models larguages2.Pretraining biases in the t			performance across	French translation	
Doth English-French, confirming their versatilty.dutes, with reactor resource language pairs.Transformer ModelsWMT'16 English- German (En- De) Task1. Deep models such as transformer model results in improved transformer model results in improved transformer model results in improved transformer model transformer model transformer model transformer model transformer model transformer MMT'181. Deep models such as transformer model results in improved transformer model transformer model transformer transformer[20]DTMT Vanilla Encoder- Decoder ModelWMT'14 English- German (En- De)1. Bloating the numer models.1. Deep models such as transformer model 2. Because of the model's depth, it is hard to process a complete batch on one GPU.[21]DTMT Vanilla Encoder- Decoder ModelWMT'14 Multi30k1. Bloating the utilizing dynamic layer models.1. Deep models such as transformer model results improves transformer model results improves transformer model[21]DTMT ModelWMT'14 Multi30k1. Bloating the utilizing dynamic layer combination of layers within the encoder and decoder pairs well with transfation spectacularity compared to traditional combination of layers within the encoder and decoder pairs well with transfation spectacularity compared to traditional combination of layers within the encoder and decoder pairs well with transfation spectacularity compared to traditional combination of layers within the encoder and decoder pairs well with transfation spectacularity compared to traditional comb			both English-German	duties which can be	
Interference confirming their versatility.Every preduces were pairs.Every preduces were pairs.Transformer ModelsWMT'161. Deepening Transformer model DLCL1. Deepening German (En- De) Task NIST'121. Deepening results in improved translation quality, particularly when combinations (DLCL).1. Deepening Transformer-Deep are highly computationally demanding and may prove difficult to train or regular hardware because of processing and memory constraints.[20]DTMT Vanilla Encoder Decoder ModelWMT'141. Bloating the encoder transformer model1. Deep models such as translation quality, or negular hardware because of processing and memory constraints.[21]DTMT Vanilla Enclarge) TransformerWMT'141. Bloating the transformer model transformer model1. Deep models such as transformer model transformer model transformer model[21]DTMT Vanilla Encoder- Decoder ModelWMT'14 WIti30k1. Bloating transformer model transformer model transformer model transformer model1. Deep models such as transformer bee can be challenging to train on regular hardware be cause of processing and memory limitations.[21]Vanilla Encoder- Decoder ModelWMT WMT1. Pretrained models combination of layers within the encoder and decoder pars well with translation spectacularity compared to traditional constant-layer models.1. NMT models need large data sets to effectively train. 2. NMT models can large data sets to effectively train. 2. NMT models can large data set			and English Franch	every pretty excessive	
Transformer ModelsWMT'16 English- German (En- De) Task NIST'121. Deepening Transformer model results in improved results in improved transformer model translation quality, particularly when utilizing dynamic layer combinations (DLCL).1. Deep models such as Transformer-Deep are highly computationally demanding and may prove difficult to train on regular hardware because of processing and memory constraints.[20]DTMT VanillaWMT'14 English (Zh- Ens-Small)2. Employing a of layers in the encoder and decoder enhances and decoder enhances conventional fixed- layer models.1. Deep models such as constraints.[21]DTMT VanillaWMT'14 English- German (En- Decoder- Decoder- Decoder1. Bloating transformer model ransformer model ransformer model1. Deep models such as transformer model ransformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]DTMT VanillaWMT'14 L. Bloating transformer model transformer model ransformer ransformer models1. Deep models such as transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]VanillaWMT ULCL. 2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.1.NMT models need large data sets to effectively train.VanillaWMT Herkräck Herkräck and COCO1. Pretrained models NMT tasks and thus are very effective for Any t			and English-Flench,	every pretty excessive-	
Transformer ModelsWMT'16 English- German (En- De) Task1. Deepening Transformer model transformer model translation quality, particularly when chinese- English (Zh- En-Small)1. Deepening translation quality, particularly when translation quality, on regular hardware because of processing and memory constraints.[20]DTMT VanillaWMT'18 English (Zh- En-Small)2. Employing a dynamic combination of layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.3. Because of the model's depth, it is hard to process a complete batch on one GPU.DTMT Vanilla1. Bloating transformer model1. Deep models such as constraints.[21]DTMT Vanilla1. Bloating transformer model1. Deep models such as constraints.[21]DTMT Vanilla1. Bloating transformer model1. Deep models such as complete batch on one GPU.[21]DTMT Vanilla1. Bloating transformer model1. Deep models such as ransformer model[21]ModelMulti30k1. Bloating transformer model1. Deep models such as ransformer a complete be challenging to train on regular hardware because of processing and memory limitations.[21]Vanilla Encoder- Deo1. WMT i14 translation, particularly when utilizing dynamic combination of layers within the encoder and ecoder pairs well with translation spectacularity compared to traditional constant-layer models.2. Due to the version's severity, it's miles hard to propare a complete set on a solitary GPU. <td></td> <td></td> <td>confirming their</td> <td>resource language</td> <td></td>			confirming their	resource language	
Transformer ModelsWMT16 English- DLCL1. Deep ning resultsthe 1. Deep models such as I fighly computationally demanding and may prove difficult to train on regular hardware because of processing and memory constraints.2.000 (2000)DTMT VanillaWMT14 English- Task1. Bloating transformer model translation quality, particularly when utilizing dynamic combinations of layers in the encoder english (Zh- En-Large) Task1. Bloating transformer model translation quality over conventional fixed- layer models.2. Because of processing and memory constraints.DTMT VanillaWMT14 English- Encoder- Deo Model1. Bloating transformer model transformer model transformer model transformer model1. Deep models such as transformer model on regular hardware be challenging to train on regular hardware be challenging to train on regular hardware because of processing and memory limitations.[21]DTMT VanillaWMT14 transformer model translation, particularly when utilizing dynamic layer combinations DLCL.1. Deep models such as transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]VanillaWMT transformer models.1. Deep models such as transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]VanillaWMT transformer utilizing dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional compared to tradi			versatility.	pairs.	
ModelsEnglish- German (En- DLCLTransformer model results in improved translation quality, particularly when Chinese- English (Zh- En-Small)Transformer model results in improved utilizing dynamic layer combinations (DLCL). because of processing and memory constraints.Transformer highly computationally demanding and may prove difficult to train on regular hardware because of processing and memory constraints.DTMT VanillaWMT'18 En-Large) Taskof layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.1. Deep models such as complete batch on one GPU.DTMT VanillaWMT'14 English- Encoder- Decoder Model1. Bloating memory transformer model Multi30k1. Deep models such as transformer model inventional fixed- transformer model and memory constant.[21]DTMT VanillaWMT'14 English- Incoder- Decoder Model1. Bloating memory transformer Multi30k1. Deep models such as transformer model layer combinations DLCL.1. Deep models such as transformer-Deep can be challenging to train on regular hardware be cause of processing and memory limitations.Vanilla Encoder- ModelWMT Hereford transfation spectacularity compared to traditional constant-layer models.2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.Vanilla Encoder- DecoderWMT Hereford Invitant and memory transfation spectacularity compared to traditional constant-layer models.1. NMT models need large data sets to <br< td=""><td>Transformer</td><td>WMT'16</td><td>1. Deepening the</td><td>1. Deep models such as</td><td>[20]</td></br<>	Transformer	WMT'16	1. Deepening the	1. Deep models such as	[20]
DLCLGerman (En- De) Task NIST'12 Ensitive finitizing dynamic layer combinations (DLCL).highly computationally demanding and may prove difficult to train on regular hardware because of processing and memory constraints.DTMT VanillaWMT'14 English2.Employing a of layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.1.Deep models such as Transformer model on regular hardware because of processing and memory constraints.DTMT VanillaWMT'14 English- German (En- Decoder1.Bloating transformer Multi30k1.Bloating transformer transformer DLCL.1.Deep models such as transformer on regular hardware be challenging to train on regular hardware because of processing and memory constraints.Vanilla Encoder- DecoderWMT'14 transformer Multi30k1.Bloating the transformer model layer combinations DLCL.1.Deep models such as transformer model in regular hardware because of processing and memory limitations.[21]Vanilla Encoder- DecoderWMT transformer Multi30k1.Pretrained models.2.Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.Vanilla Encoder- DecoderWMT Flickr30k and COCO1.Pretrained models are very effective for low-parallel-data languages.2.Pretraining transformer1.NMT models need languages.2.Pretraining biases in the training	Models	English-	Transformer model	Transformer-Deep are	
De) Task NIST'12translation particularly utilizing dynamic layer combinations (DLCL). 2.Employing a dynamic combination of layers in the encoder english (Zh- En-Large) Tasktranslation quality, or of layers in the encoder and decoder enhances translation quality over energlish (Zh- En-Large) Taskdemanding and may prove difficult to train on regular hardware because of processing and memory constraints.DTMT Vanilla Encoder- Decoder ModelWMT'14 English- (Brent in the encoder Decoder1.Bloating transformer Multi30k1.Bloating the multizing dynamic transformer model translation, particularly when utilizing dynamic combinations DLCL.1.Deep models such as transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]Vanilla Encoder- Deo Multi30k1.Bloating transformer model translation, particularly when utilizing dynamic combinations DLCL.1.Deep models such as transformer-Deep can be cause of processing and memory limitations.[21]Vanilla Encoder- Multi30k1.Pretrained models.2.Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.Vanilla Encoder- DecoderWMT INSLT INSLT1.Pretrained models.1.NMT models need large data sets to effectively train.Vanilla Encoder- DecoderWMT INSLT INSLT1.Pretrained models are very effective for low-parallel-data languages.2.Pretraining biases in the training	DLCL	German (En-	results in improved	highly computationally	
NIST'12 Chinese- English (Zh- En-Small) Taskparticularly when utilizing dynamic layer combinations (DLCL). 2.Employing a dynamic combination of layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.prove difficult to train on regular hardware because of processing and memory constraints. 2.Because of the model's depth, it is hard to process a complete batch on one GPU.DTMT Vanilla Encoder- Decoder ModelWMT'14 English- German (En- Large) Transformer IWSLT'15 Model1.Bloating translation, particularly when utilizing dynamic layer combinations DLCL. 2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.1.Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]Vanilla Encoder- INSLT1.Pretrained models combaration pactecularity compared to traditional constant-layer models.1.NMT models need large data sets to effectively train. 2.NMT models can inherit and pass on languages.2.Pretraining biases in the training		De) Task	translation quality,	demanding and may	
Chinese- English (Zh- En-Small)utilizing dynamic layer combinations (DLCL). 2.Employing a dynamic combination of layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.on regular hardware because of processing and memory constraints. 2. Because of the model's depth, it is hard to process a complete batch on one GPU.DTMT Vanilla Encoder- Decoder Transformer ModelWMT'14 English- German (En- De) IWSLT'151. Bloating Transformer model results improves translation, particularly when utilizing dynamic layer combinations player combination on regular hardware because of processing and memory imitations.[21]Vanilla Encoder- Deo ITansformer Model1. Bloating Transformer Multi30k1. Bloating Transformer model layer combinations player combination player combination of layers within the encoder and decoder pars well with translation spectacularity compared to traditional constant-layer models.1. NMT models need large data sets to effectively train. 2. NMT models can inherit and pass on biases in the trainingVanilla Encoder DecoderWMT INSLT To Recoder1. Pretrained nodels.1. NMT models need large data sets to effectively train. 2. NMT models can inherit and pass on biases in the training		NIST'12	particularly when	prove difficult to train	
Employing a English (Zh- En-Small) TaskCombinations (DLCL). 2.Employing a dynamic combination of layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.because of processing and memory constraints. 2.Because of the model's depth, it is hard to process a complete batch on one GPU.DTMT Vanilla Encoder DecoderWMT'14 Enstormer Model1.Bloating Transformer model results improves translation, particularly when utilizing dynamic combinations DLCL.1.Deep models such as complete batch on one GPU.DTMT Vanilla ModelWMT'14 Encoder- De)1.Bloating Transformer model results improves translation, particularly when utilizing dynamic combinations DLCL.1.Deep models such as be challenging to train on regular hardware because of processing and memory limitations.[21]Vanilla Encoder- Decoder2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2.Due to the version's set on a solitary GPU.Vanilla Encoder- INSLT1.Pretrained models can be transferred to no spectacularity compared to traditional constant-layer models.1.NMT models need effectively train. 2.NMT models can inherit and pass on biases in the training		Chinese-	utilizing dynamic laver	on regular hardware	
Ensmall En-Small)2.Employing a dynamic combination of layers in the encoder and decoder enhances English (Zh- En-Large) Task2.Employing a dynamic combination of layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.and memory constraints.DTMT VanillaWMT'14 English- German (En- Decoder1. Bloating results1. Deep models such as Transformer model translation, particularly when utilizing dynamic combinations DLCL.1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]ModelMulti30klayer combinations DLCL.2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT1. Pretrained models.1. NMT models need large data sets to large data sets to		English (7h-	combinations (DI CI)	because of processing	
Enr-sman) Task2.:Enproying a dynamic combination of layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.and decoder enhances model's depth, it is hard to process a complete batch on one GPU.DTMT VanillaWMT'14 English- German (En- Decoder1. Bloating transformer IWSLT'151. Bloating transformer model layer combinations DLCL. 2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional compared to traditional <td></td> <td>$\frac{\text{Linguist}}{\text{En Small}}$</td> <td>2 Employing a</td> <td>and maman</td> <td></td>		$\frac{\text{Linguist}}{\text{En Small}}$	2 Employing a	and maman	
Taskdynamic combination of layers in the encoder and decoder enhances translation quality over 		EII-SIIIaII)	2.Employing a	and memory	
WMI 118 Chinese- English (Zh- En-Large) Taskof layers in the encoder and decoder enhances translation quality over conventional fixed- layer models.2. Because of the model's depth, it is hard to process a complete batch on one GPU.DTMT VanillaWMT'14 English- German (En- Decoder1. Bloating Transformer De)1. Deep models such as Transformer model translation, particularly when utilizing dynamic layer combinations DLCL.1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]ModelMulti30k1. Bloating translation, particularly ulayer combinations DLCL.2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.Vanilla Encoder- DecoderWMT Il.Pretrained models and COCO1. NMT models need large data sets to effectively train. are very effective for languages.2.Pretraining to w-parallel-data languages.2.Pretraining[22]		I ask	dynamic combination	constraints.	
Chmese- English (Zh- En-Large) Taskand decoder enhances translation quality over conventional fixed- layer models.model's depth, it is hard to process a complete batch on one GPU.DTMT VanillaWMT'14 English- German (En- Decoder1.Bloating Transformer model results1.Deep models such as transformer model on regular hardware be challenging to train on regular hardware because of processing and memory limitations.[21]ModelWMT'15 Multi30k1.Bloating translation, particularly uwhen utilizing dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2.Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT Flickr30k and COCO1.Pretrained models1.NMT models need large data sets to effectively train.[22]Vanilla GPT GPTGCO Flickr30k1.Pretrained nodels2.NMT models can inherit and pass on languages.2.Pretraining2.NMT models can inherit and pass on biases in the training		WM118	of layers in the encoder	2. Because of the	
English (Zh- En-Large) Tasktranslation quality over conventional fixed- layer models.hard to process a complete batch on one GPU.DTMTWMT'141.Bloating Transformer model1.Deep models such as Transformer model[21]DTMTWMT'141.Bloating Transformer model1.Deep models such as Transformer model[21]DecoderDe)rranslation, particularly when utilizing dynamic layer combinationson regular hardware because of processing and memory[21]ModelMulti30klayer combinations pLCL.and memory limitations.[21]VanillaKutti 15 within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2.Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT1.Pretrained models and COCO1.NMT models need effectively train.VanillaWMT1.Pretrained models and COCO1.NMT models can inherit and pass on languages.2.PretrainingWodelsand COCOare very effective for languages.2.Pretraining2.NMT models can inherit and pass on biases in the training		Chinese-	and decoder enhances	model's depth, it is	
En-Large) Taskconventional fixed- layer models.complete batch on one GPU.DTMT VanillaWMT'14 English- German (En- De)1. Bloating Transformer model1. Deep models such as Transformer model[21]ModelGerman (En- De)results improves translation, particularly when utilizing dynamic layer combinationsbe challenging to train on regular hardware because of processing and memory limitations.[21]ModelMulti30klayer combinations DLCL.and memory limitations.[31]2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT Flickr30k and COCO1. Pretrained models1. NMT models need large data sets to effectively train.VanillaWMT Flickr30k and COCO1. Pretrained models1. NMT models can inherit and pass on languages.2. Pretraining biases in the training		English (Zh-	translation quality over	hard to process a	
Tasklayer models.GPU.DTMTWMT'141. Bloatingthe1. Deep models such as[21]VanillaEnglish-Transformer modelTransformer-Deep canransformer-Deep can[21]DecoderDe)resultsimprovesbe challenging to trainin regular hardwareDecoderDe)translation, particularlyon regular hardwareinitiations.ModelMulti30klayercombinationsandmemoryDLCL.limitations.2. Using a dynamicseverity, it's miles hardit's miles harddecoder pairs well withcombination of layersseverity, it's miles hardit's miles harddecoder pairs well withto prepare a completeset on a solitary GPU.set on a solitary GPU.vanillaWMT1. Pretrained models1. NMT models need[22]VanillaWMT1. Pretrained models1. NMT models caninherit and pass onBERTand COCOare very effective for2. NMT models caninherit and pass onGPTlanguages.2. Pretrainingbiases in the traininginherit and pass on		En-Large)	conventional fixed-	complete batch on one	
DTMT VanillaWMT'14 English- German (En- Decoder1. Bloating Transformer model results1. Deep models such as Transformer model be challenging to train on regular hardware because of processing and memory limitations.[21]ModelMulti30k1. Bloating Transformer IWSLT'15 Model1. Deep models such as Transformer layer combinations DLCL. 2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.VanillaWMT1. Pretrained models.2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT1. Pretrained models.1. NMT models need effectively train. 2. NMT models can inherit and pass on languages.2. Pretraining[22]		Task	layer models.	GPU.	
DTMTWMT'141. Bloatingthe1. Deep models such as[21]VanillaEnglish- German (En- DeoderTransformerTransformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.[21]ModelMulti30klayercombinations DLCL. 2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.VanillaWMT1. Pretrained models2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT1. Pretrained models1. NMT models need large data sets to effectively train.VanillaWMT1. Pretrained now parallel-data languages.2. Pretraining2. NMT models can inherit and pass on biases in the training					
WanillaFunctionInstruction<					
VanificEnginitFinansion fieldinductfinansion fieldfinansion fieldEncoder-German (En- De)resultsimproves translation, particularly on regular hardwarebe challenging to train on regular hardwareModelMulti30klayer LCL.combinations limitations.and memoryModelMulti30klayer LCL.limitations.2. Using a dynamic combination of layers2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT1. Pretrained models1. NMT models need effectively train.VanillaWMT1. Pretrained modelslarge data sets to effectively train.VanillaGOCO and COCOare very effective for low-parallel-data languages.2. Pretraining2. NMT models can inher and pass on biases in the training	DTMT	WMT'14	1 Bloating the	1 Deep models such as	[21]
DecoderDeresultsimprovesbe charlinging to trainDecoderDe)translation, particularlyon regular hardwareTransformerIWSLT'15when utilizing dynamicbecause of processingModelMulti30klayercombinationsDLCL.limitations.2.2. Using a dynamiccombination of layerswithin the encoder andseverity, it's miles harddecoder pairs well withto prepare a completeset on a solitary GPU.spectacularitycompared to traditionalconstant-layer models.VanillaWMT1. Pretrained modelsINSLTcan be transferred toDecoderFlickr30kModelsand COCOBERTand COCOGPTlanguages.2.PretrainingCNNbecause in the trainingCNNlanguages.2.PretrainingCNNbecause in the training	DTMT Vanilla	WMT'14 English-	1. Bloating the Transformer model	1. Deep models such as Transformer-Deep can	[21]
DecoderDeftranslation, particularlyon regular hardwareTransformerIWSLT'15when utilizing dynamicbecause of processingModelMulti30klayercombinationsandDLCL.limitations.2. Using a dynamiccombination of layers2. Due to the version'swithin the encoder andseverity, it's miles harddecoder pairs well withto prepare a completespectacularitycompared to traditionalconstant-layer models.1. NMT models needVanillaWMT1. Pretrained modelsINSLTcan be transferred tolarge data sets toDecoderFlickr30kNMT tasks and thusModelsand COCOare very effective forBERTlanguages.2.Pretrainingbiases in the trainingGPTlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder	WMT'14 English- Cerman (En	1. Bloating the Transformer model	1. Deep models such as Transformer-Deep can	[21]
Transformer ModelIWSLTTSwhen utilizing dynamic layer DLCL.because of processing and memory limitations.ModelMulti30klayer layer combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.and memory limitations.VanillaWMT1. Pretrained models2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT1. Pretrained models1. NMT models need large data sets to effectively train.VanillaWMT1. Pretrained models and COCO1. NMT models need large data sets to effectively train.Modelsand COCOare very effective for low-parallel-data 	DTMT Vanilla Encoder- Dacadar	WMT'14 English- German (En-	1. Bloating the Transformer model results improves translation particularly	1. Deep models such as Transformer-Deep can be challenging to train	[21]
ModelMulti30klayer o combinationsand memoryDLCL.limitations.2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT1. Pretrained can be transferred to Decoder1. NMT large e data sets to effectively train.VanillaWMT1. Pretrained can be transferred to large data sets to effectively train.[22]Models BERT GPTand COCOare very effective for low-parallel-data languages.2.Pretraining2. NMT models biases in the training	DTMT Vanilla Encoder- Decoder	WMT'14 English- German (En- De)	1. BloatingtheTransformermodelresultsimprovestranslation, particularly	1. Deep models such as Transformer-Deep can be challenging to train on regular hardware	[21]
DLCL.limitations.2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT WMT1. Pretrained models can be transferred to NMT tasks and thus are very effective for large data sets to effectively train.[22]Imitations sectacularity compared to traditional constant-layer models.1.NMT models need large data sets to effectively train.VanillaWMT Imitation constant-layer models1.NMT models need large data sets to effectively train.DecoderFlickr30k low-parallel-data languages.2.Pretraining 	DTMT Vanilla Encoder- Decoder Transformer	WMT'14 English- German (En- De) IWSLT'15	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamic	1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing	[21]
2. Using a dynamic combination of layers within the encoder and decoder pairs well with translation spectacularity compared to traditional constant-layer models.2. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT I. Pretrained models1. NMT models need large data sets to effectively train.[22]VanillaWMT I. Pretrained models1. NMT models need large data sets to effectively train.[22]DecoderFlickr30k and COCONMT tasks and thus are very effective for low-parallel-data languages.2.Pretraining2. NMT models can biases in the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinations	1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory	[21]
VanillaWMT1. Pretrained can be transferred to are very effective for languages.2.Pretraining1. NMT models need effective for languages.2.Pretraining[22]VanillaWMT1. anguages.2.Pretraining languages.2.Pretraining1. be to the version's severity, it's miles hard to prepare a complete set on a solitary GPU.	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. Bloating the Transformer model results improves translation, particularly when utilizing dynamic layer combinations DLCL.	1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.	[21]
WanillaWMTi. Pretrained compared to traditional constant-layer models.severity, it's miles hard to prepare a complete set on a solitary GPU.VanillaWMT1. Pretrained can be transferred to Decoder1. NMT large ata sets to effectively train.[22]Image: BERT GPTand COCONMT languages.2.Pretraining languages.2.Pretraining2. NMT biases in the training[22]	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamic	1. Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations.	[21]
decoder pairs well with translation spectacularity compared to traditional constant-layer models.to prepare a complete set on a solitary GPU.VanillaWMT1. Pretrained models1. NMT models need[22]VanillaWMT1. Pretrained models1. NMT models need[22]Encoder-IWSLTcan be transferred tolarge data sets to[22]DecoderFlickr30kNMT tasks and thuseffectively train.[21]Modelsand COCOare very effective for low-parallel-data2. NMT models can inherit and pass on[41]GPTIanguages.2.Pretrainingbiases in the trainingImage data sets to omegasing the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layers	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's 	[21]
VanillaWMT1. Pretrainedset on a solitary GPU.VanillaWMT1. Pretrainedmodels1. NMTEncoder-IWSLTcan be transferred tolargedata sets toDecoderFlickr30kNMTtasks and thuseffectively train.Modelsand COCOare very effective for2. NMTmodels canBERTlow-parallel-datainherit and pass onlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder and	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard 	[21]
VanillaWMT1. Pretrainedmodels1. NMTmodels[22]Encoder-IWSLTcan be transferred tolarge data sets to[22]DecoderFlickr30kNMT tasks and thuseffectively train.Modelsand COCOare very effective for2. NMTmodels canBERTlow-parallel-datainherit and pass onGPTlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well with	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete 	[21]
VanillaWMT1. Pretrained models1. NMT models need[22]Encoder-IWSLTcan be transferred tolarge data sets toDecoderFlickr30kNMT tasks and thuseffectively train.Modelsand COCOare very effective for2. NMT models canBERTlow-parallel-datainherit and pass onGPTlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslation	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU 	[21]
VanillaWMT1. Pretrained models.1. NMT models need[22]Encoder-IWSLTcan be transferred tolarge data sets toDecoderFlickr30kNMT tasks and thuseffectively train.Modelsand COCOare very effective for2. NMT models canBERTlow-parallel-datainherit and pass onGPTlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularity	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. 	[21]
VanillaWMT1. Pretrained models.1. NMT models need[22]Encoder-IWSLTcan be transferred tolarge data sets toDecoderFlickr30kNMT tasks and thuseffectively train.Modelsand COCOare very effective for2. NMT models canBERTlow-parallel-datainherit and pass onGPTlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditional	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. 	[21]
VaninaWM11. Pretrained models1. NM1 models need[22]Encoder-IWSLTcan be transferred tolarge data sets toDecoderFlickr30kNMT tasks and thuseffectively train.Modelsand COCOare very effective for2. NMT models canBERTlow-parallel-datainherit and pass onGPTlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditional	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. 	[21]
Encoder- DecoderIWSL1 Flickr30kcan be transferred to NMT tasks and thus are very effective for low-parallel-datalarge effectively train.Models BERT GPTand COCO Index and COCOare very effective for low-parallel-data2. NMT models can inherit and pass on biases in the training	DTMT Vanilla Encoder- Decoder Transformer Model	WMT'14 English- German (En- De) IWSLT'15 Multi30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. 	[21]
DecoderFlickr30kNMT tasks and thuseffectively train.Modelsand COCOare very effective for2. NMT models canBERTlow-parallel-datainherit and pass onGPTlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodels	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. 1.NMT models need 	[21]
Models BERT GPTand COCOare very effective for low-parallel-data2. NMT models can inherit and pass on biases in the trainingONNImage 2. PretrainingImage 2. Pretraining	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder-	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred to	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to 	[21]
BERTlow-parallel-datainherit and pass onGPTlanguages.2.Pretrainingbiases in the training	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder- Decoder	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT Flickr30k	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred toNMTtasks and thus	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to effectively train. 	[21]
GPT languages.2.Pretraining biases in the training	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder- Decoder Models	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT Flickr30k and COCO	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred toNMTtasks and thusare very effective for	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to effectively train. NMT models can 	[21]
	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder- Decoder Models BERT	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT Flickr30k and COCO	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred toNMTtasks and thusare very effective forlow-parallel-data	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to effectively train. NMT models can inherit and pass on 	[21]
UNINS language models like data, resulting in	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder- Decoder Models BERT GPT	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT Flickr30k and COCO	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred toNMT tasks and thusare very effective forlow-parallel-datalanguages.2.Pretraining	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to effectively train. NMT models can inherit and pass on biases in the training 	[21]
LSTM BERT and GPT has biased or unfair	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder- Decoder Models BERT GPT CNNs	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT Flickr30k and COCO	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred toNMTtasks and thusare very effective forlow-parallel-datalanguages.2.Pretraininglanguagemodelslike	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to effectively train. NMT models can inherit and pass on biases in the training data, resulting in 	[21]
GRU been shown to enhance translations. This is a	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder- Decoder Models BERT GPT CNNs LSTM	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT Flickr30k and COCO	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred toNMT tasks and thusare very effective forlow-parallel-datalanguagelanguagemodelslikeBERTandGPThas	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to effectively train. NMT models can inherit and pass on biases in the training data, resulting in biased or unfair 	[21]
	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder- Decoder Models BERT GPT CNNs LSTM GRU	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT Flickr30k and COCO	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred toNMTtasks and thusare very effective forlow-parallel-datalanguagelanguagemodelslikeBERTand GPThasbeen shown to enhance	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to effectively train. NMT models can inherit and pass on biases in the training data, resulting in biased or unfair translations This is a 	[21]
	DTMT Vanilla Encoder- Decoder Transformer Model Vanilla Encoder- Decoder Models BERT GPT CNNs LSTM GRU	WMT'14 English- German (En- De) IWSLT'15 Multi30k WMT IWSLT Flickr30k and COCO	1. BloatingtheTransformermodelresultsimprovestranslation, particularlywhen utilizing dynamiclayercombinationsDLCL.2. Using a dynamiccombination of layerswithin the encoder anddecoder pairs well withtranslationspectacularitycompared to traditionalconstant-layer models.1. Pretrainedmodelscan be transferred toNMT tasks and thusare very effective forlow-parallel-datalanguage modelslikeBERT and GPT hasbeen shown to enhance	 Deep models such as Transformer-Deep can be challenging to train on regular hardware because of processing and memory limitations. Due to the version's severity, it's miles hard to prepare a complete set on a solitary GPU. NMT models need large data sets to effectively train. NMT models can inherit and pass on biases in the training data, resulting in biased or unfair translations. This is a 	[21]

Seq2Seq	American	task of translation. 1. These pairs scored	applicationswherefairnessandneutralityareimportant.1.Performancecan	[23]
Transformer Models	Sign Language (ASL)	better than different styles, with better BLEU rankings on the GSL dataset. 2. Higher models proved robust ability on much less controlled ASL and CSL datasets, showing versatility.	fluctuate with less managed facts units because of variability in signing patterns and recording environments. 2. Advanced models, such as transformers, necessitate substantial computational resources throughout both the training and inference phases.	
Neural Machine Translation	WMT (Workshop on Machine Translation)	1. TranslationAdequacy:In blindtests,CUBBITTperformed better thanprofessional humantranslatorsinmaintainingtheoriginal meaning of thetext.2. Fluency Comparison:Human translationswere graded as morefluent.	 Fluency Gap: There is still a narrow fluency gap between CUBBITT's outputs and those of human professionals. Domain Specificity: The performance of the system has been mostly tested on news articles, and its performance on other domains or language pairs might need to be evaluated. 	[24]
Global Memory Module	IWSLT	 The model presented here greatly enhances translation quality by efficiently capturing and making use of both local and global context information. Integrating grammatical dependencies with the attention mechanism enhances context representation, resulting in more precise translations. 	1. The "end-to-end" design of deep learning models may result in poor interpretability of learning outcomes, making it hard to know the decision-making process. 2. Although the model is good on the IWSLT dataset, its generalization to other datasets or real-world use needs to be verified.	[25]

RBMT and	United	1. The move from rule-	1.NMT systems need	[26]
SMT	Nations	based and statistical	huge quantities of	
	Parallel	models to neural	good quality parallel	
	Corpus	models has	data, and such parallel	
		tremendously	data may not exist for	
		improved the quality of	all language pairs.	
		translations.	2. Even with progress,	
		2. Combination of	getting high-quality	
		various MT paradigms	translations for low-	
		can effectively cope	resource languages is	
		with particular issues,	still a major issue.	
		like low-resource		
		languages		
Transformer-	Translation	1. The multi-challenge	1. The model works	[27]
Based NMT	Corpus (TC)	mastering method	well but keeps quite	
		enhances MAP by	low MAP rankings as	
		using 16% in	a result of having few	
		comparison to the	education epochs and	
		baseline transformer.	dataset.	
		2. Evades overfitting to	2. Speaks to gaining	
		TC terminology,	access to a retrieval	
		producing	corpus (RC) index,	
		translations relevant to	which hinders	
		each corpora.	schooling index.	

2.3 Task 3-Summarization

Summarization is the process of creating a brief and coherent summary of a longer text without losing its core meaning. It is the process of extracting important information and removing unnecessary details to create a shorter version that still maintains the key points of the original text. Summarization methods, especially in deep learning, have numerous applications in real-world situations. For example, news aggregation sites, where short summaries of long news stories are given to readers. This provides faster reading of news while ensuring the vital content[28]. Summarization is employed for assisting researchers, students, and professionals in maintaining pace with scientific literature in massive quantities. Summarization platforms can summarize research papers into the main findings, abstracts, or even a summary of a paper, with the aim of saving time and making research easier to access[29]. Blogging websites and social media websites utilize summarization to

create short summaries of posts to enable users to quickly scan through content without the need to read entire posts[30]. Pre-deep learning summarization strategies were predominantly based on rule-based statistical processes. including and extractive keyword extraction-based summarization, sentence rank algorithms (e.g., TF-IDF), and heuristic methods that marked up salient sentences by their occurrence or location within a document. These methods had the limitation that they could not interpret the contextual or semantic nature of the content. They had difficulty in generating coherent abstracts, producingincomplete results, typically since they did not look at the more profound relationships between words or phrases. Moreover, these approaches tended to be computationally costly and generalize across failed to various languages. They also did not cope-up with complex sentence structures, synonyms, or paraphrases, which have been effectively handled by deep learning models. Deep

learning methods for text summarization utilize strong neural network architectures, specifically sequence-to-sequence models and transformers, to produce more coherent and contextually correct summaries. Seq2Seq models, based on encoders and decoders (usually with LSTMs or GRUs), can map input text into a fixed-size representation and output a summary by predicting each word in sequence. The transformer architecture where models such as BERT, GPT, and T5 come into play, has transformed summarization by employing self-attention to tackle whole documents in parallel and capture long-range dependencies.A detailed overview of various models used in Summarization, its limitations, and key takeaways are provided in Table 3.

Models	Data Sets	Key takeaways	Limitations	References
STFIDF TBS	BillSum, IN-ABS and IN-EXT	 Legal structures vary by areas, so there is a need for models evolved on jurisdiction- particular statistics to stay accurate and relevant. With prison documents written in diverse languages, institutions including the European Union, there may be growing call for for fashions able to doing multilingual and pass-lingual summarization obligations. 	1. There is a great scarcity of huge-scale, outstanding datasets across most jurisdictions and languages, making it hard to build sturdy legal summarization fashions. 2. Traditional assessment metrics may fail to effectively capture actual correctness and legal soundness of summaries that are vital in prisoneventualities.	[31]
RNN Extractor and Seq2Seq Extractor Cheng & Lapata Model	Reddit and AMI	 Position Bias: Sentence function is the main responsibility that summarization models must bear. Word averaging is just as good as CNNs/RNNs. 	 Performance isn't always consistent throughout domain names. Models are prone to overfitting dataset- specific characteristics. 	[32]
GoogleNet and AlexNet LSTM	YouTube	1. Deep learning outperforms conventional	1. Prevention of duplicate or Unwanted files.	[33]

Table 3: Summar	y of popu	lar Studies	on Sumn	narization	Task
-----------------	-----------	-------------	---------	------------	------

		approaches	2.Preservation of	
		(CNNs, RNNs,	meaningful and	
		Transformers	Contextually	
		enhance	appropriate segments.	
		summarization).		
		2. Supervised		
		models are precise		
		but require large		
		labelled datasets		
		(SumMe,		
		TVSum).		
Seq2Seq	DUC	1. Getting to know	1. Super datasets	[34]
	(Document	that strategies	required for powerful	
	Understanding	have dramatically	training of deep	
	Conferences)	progressed the	mastering models.	
		overall	2. Deep studying	
		performance of	algorithms for MDS	
		MDS systems.	tend to call for loads	
		2. The authors	of computational	
		advocate a brand-	assets, consequently	
		new taxonomy	less suitable for	
		classifying neural	researchers with	
		community design	confined facilities.	
		methods for MDS.		50 - 1
RNNs	Gigaword	1. It discusses the	1. Traditional	[35]
and		evolution of	evaluation metrics	
BERT SUM, T5,		models from	like ROUGE may not	
PEGASUS		RNNs and LSTMs	fully capture the	
		to more advanced	quality of abstractive	
		transformer	summaries, especially	
		models, snowing	when it comes to	
		improvements in	factual accuracy and	
		generating	2 The models often	
		concient and	2. The models often	
		culture	dealing with out of	
		2 POLICE 1	vocabulary (OOV)	
		ROUGE-2 and	words which can	
		ROUGE-L are the	negatively impact	
		maximum broadly	summary quality	
		used metrics to	especially in	
		evaluate	specialized domains	
		summarization	-r	
		pleasant		
Attention	Pre-Training	1. The method	1. The fulfilment of	[36]
Mechanisms	and Fine-	below attention	the approach is largely	
	Tuning	utilizes deep	dependent on the	
		fashions that are	presence of first rate,	
		trained	large-scale datasets	
		extensively on big	for pre-training and	

		datasets through pre-training and excellent-tuned with domain- particular net pages. 2. The technique indicates area adaptability, effectively moving to extraordinary net domain names by	satisfactory-tuning. 2.Although the technique contains extraordinary fields, a few specialized domains with precise terminologies or frameworks may want in addition adjustment.	
		way of exceptional-tuning pre-trained fashions with little domain-unique facts.		
GPT-2 BERT	Udacity Lecture Transcripts	1.BERTplayshigherthantraditionaltacticsinsummarizinglectures.2.K-Meansclusteringletsinfordynamicadjustmentofsummary durationinlinewithconsumer desire.	 Difficulty with prolonged lectures (a hundred sentences may lose context). Computationally highly priced (BERT could be very useful resource-in depth). 	[37]
Coverage Models	Gigaword	 Integration of attention mechanism and pointer-generator network has enormously enhanced the generated summary's quality. Having access to large and high- quality datasets is imperative for training good summarization models. 	 Abstractive models have the possibility of creating information that does not exist in the source material, creating possible inaccuracy. Advanced deep learning models take a lot of computational resources, and this may not be readily available to all researchers. 	[38]
Graph-Based	TAC (Text	1 Dependent on	1 It may not be	[39]

Methods	Analysis	the selection of	readable to see that	
Template-Based	Conference)	pre-existing	they can be based on	
Methods		sentences; While	literal sentences,	
		using is less	which can also bring	
		complex to use, it	about excesses and	
		can be repetitive	lack of glide.	
		and incompatible.	2.Sophisticated	
		2.Creates new	natural language	
		sentences that	production strategies	
		forms the content	and a large amount of	
		of the text;	education fabrics	
		Greater is flexible	require: They are also	
		but more difficult	interrupted with the	
		because it asks for	help of problems in	
		herbal language	preserving the data	
		era's abilities.	up-to-date	
BERT	IMDb	1. Model design	1. It takes a large	[40]
BiGRU	Reviews	selection must	amountof	
		conform to the	computational	
		inherent nature of	resources. especially	
		the text	to train and inferior	
		classification task	transformer-based	
		and consider the	architecture.	
		size of the	2. Model can overfit	
		sequence and the	training data.	
		significance of the	especially when	
		reference.	working with small	
			datasets.	

2.4 Task 4-Question and Answer Session

A question answer (QA) session is the step where a machine model is asked to comprehend a provided text (or set of texts) and answer particular questions accordingly based on that. QA systems have numerous applications in everyday situations.Virtual assistance such as Amazon Alexa, Google Assistant, and Apple Siri employ QA systems to respond to user queries and carry out actions based on input in natural language. Chatbots employed in customer support systems also depend on QA models to aid users[41]. In the medical sector, QA systems are applied for medical question assisting doctors, medical answering, students, and even patients to receive information from medical correct literature, clinical guidelines[42]. OA systems can assist media organizations in

automating the process of summarization and extracting salient information from news stories. They can be utilized to

respond to questions regarding events, individuals and issues reported in the news[43]. Prior to deep learning QA systems, there existed a range of pre-deep learning QA methods. These methods mostly depended on rule-based techniques, conventional machine learning, and statistical models. These pre-deep learning techniques formed the foundation in the development of contemporary QA systems and formed the basis of subsequent more complex methodologies like deep learning, which subsequently displaced or substituted many of these methods using more advanced models that better handle context and semantics. Pre-deep learning methods forQA systems were very limited. These systems tended to be inflexible,

involving manual rule definition or predefined knowledge bases and did not do well with complex or vague queries. They did not have deep contextual understanding, did not handle word ambiguity well and were unable to handle synonyms, paraphrases, or complicated sentence structures well. These problems eventually resulted in the emergence of deep learning models, which were capable of coping with natural language variability more effectively and offering more accurate, adaptive QA solutions. The initial models such as RNN and LSTM networks employed for sequential were text processing, while attention models enabled models to concentrate on significant parts

of the text [44]. Transformer models, specifically BERT [45], brought about bidirectional context comprehension, greatly transforming performance over QA tasks. Models such as T5 [46] have also improved QA by solving tasks as text-totext or producing answers outright. These models have performed well in opendomain QA using large pre-trained models and fine-tuning them for specific tasks. Their capacity to capture local and global dependencies in the text has placed them at the state-of-the-art for QA systems.A detailed overview of various models used their limitations. and in OA. kev takeaways are listed in Table 4.

Models	Datasets	Key takeaways	Limitations	References
DEDT		1 Deen mestaring has	1 Madical yacabulary	[47]
DEK I Uubrid	MEDIQA	immensely improved	and the complexity of	[4/]
Models		the performance of	medical language are	
WIOdels		scientific OA systems	challenging for herbal	
		to recognize and bring	language processing	
		natural language more	fashions	
		efficiently	2 It is difficult to	
		2 Blending similar	quantify overall	
		approaches such as	performance of	
		retrieval-based solely	medical OA systems	
		and understanding-	because medical	
		based solely models is	recommendation is	
		likely to vield	subjective and there	
		improved outcomes	may be variations in	
		than a single approach.	correct solutions.	
Dataset-	TREC OA	1.Architectures that	1.The performance is	[48]
Specific		model question-answer	only measured for the	
Optimized		interactions at earlier	TREC QA dataset and	
Models		stages (word or	therefore may restrict	
Inter-		subsquence level) work	the generality of the	
Sentences		better.	results to other datasets	
Architecture		2. The paper brings to	or domains.	
		the attention that	2.Four provided	
		different architectures	architectures comprise	
		provide different	the scope of the	
		performance, and there	research, although	
		is a focus on the correct	potential models	
		choice based on the	different from them are	
		application to be	not taken into account.	
		addressed		

Table 4: Summary of popular Studies on Question-Answering Task

FCNs and	PASCAI	1 Deep learning	1 A model can be	[4 9]
LSTM	VOC	algorithms have greatly	trained on a particular	[>]
		enhanced the accuracy	dataset but can be poor	
		of semantic	in another scenario or	
		segmentation	domain.	
		operations compared to	2. Model will require	
		conventional	domain adaptation	
		techniques.	methods or other	
		2. The encoder-decoder	training sets.	
		architecture, i.e., the		
		network architecture, is		
		crucial in maintaining		
		the equilibrium		
		between localisation		
		accuracy and context		
		capture.		
Autoencoders	Electronic	1. Deep learning	1. Utilization of	[50]
DBNs	Health	algorithms have much	sensitive patient	
	Records	enhanced the accuracy	information poses	
		of disease diagnosis	concerns related to	
		and prognosis.	privacy and security.	
		2. Deep learning allows	2. The accuracy of these models highly	
		neterogeneous data	relies on the quality of	
		integrated offering an	well as the availability	
		integrated, onering an	of data which in	
		natient health	bealthcare applications	
		patient nearth.	can prove to be a	
			limiting factor.	
Information	WikiQA	1. The discipline has	1. Deep learning model	[51]
Retrieval and		moved from the	training and	L1
Deep Neural		classical IR-based	deployment require	
Network		approach to integrating	immense	
		deep learning methods,	computational	
		resulting in huge leaps	resources, which might	
		in comprehending and	be out of reach for	
		creating correct	some organizations.	
		answers.		
		2. Merging IR and DNN		
		techniques has the		
		potential to capitalize		
CDU	MOTer	on both approaches.	1 Turinin -	[50]
UKU	MCTest Deteset	1. Attention-based	1. I raining certain	[32]
Memory	(Microsoft)	assist In extracting information	Dynamic Momory	
Networks		pertinent to answering	Networks is	
THERE		questions	computationally costly	
		2 Sequence-to-	2 Performance is	
		sequence models work	constrained by fixed	
		well to produce multi-	memory sizes on long-	

		word responses.	context tasks.	
GANs	Genomic Databases	1. Deeplearningalgorithms can enhancethe accuracy of diseasedetectionanddiagnosis.2. Modelsallowforcustomizedtreatmentprotocolsbasedonspecificpatientinformation.	 The management of sensitive patient data requires strict privacy practices. Deep learning models tend to be "black boxes" and difficult to interpret their decision-making processes. 	[53]
MRC	SQuAD (Stanford Question Answering Dataset)	1. The incorporation of deep learning methods, particularly neural networks, has greatly enhanced the performance of open- domain QA systems. 2. A range of models, such as MRC, knowledge-based, and hybrid models, serve various aspects of QA tasks, and the choice of suitable models depends on the application.	1. Certain models struggle to scale to large datasets or process the enormous amount of information present in open- domain environments. 2. Models can still be challenged by grasping subtle contexts or unclear questions and provide the wrong answers.	[54]
TPRN	SQuAD	1. TPRNencodesgrammar-like structureswithoutexplicitannotation.2. Symbol-rolebindingenhancesreadabilitybylinkingwordswithgrammatical functions.	 Lower accuracy than BiDAF (~2% loss of F1 score). Takes large computational power for training and tuning. 	[55]
SGD Elastic Averaging SGD	TREC QA	 Distributed deep learning speeds up training procedures. Optimization algorithm performance is inconsistent; whereas certain ones such as EASGD perform well under distributed environments 	 Although improved, the speedup from increased workers is sublinear, which means returns diminish as more workers are added. Distributed training brings communication overhead, which can negate the advantages of parallelism, particularly in high- 	[56]

		latency environments.	
	, .	11' 1 1'1	1 1 1

2.5 Task 5-Generation

Generation in deep learning architecture focuses on creating new content, whether it's text or even synthetic data, and usesadvanced neural networks like RNN, LSTM. Transformer, and GRUs to generate human-like text. These models help to understand grammar, context and pattern, enabling them to produce coherent and contextually relevant text. The application of deep learning expands over various industries and used into daily life making tasks easy, faster, smarter and more efficient. We can easily write an emailand can chat with virtual assistant [57].We can easily get AI generated content[58]. Chatbots likeChatgpt andGemini used in daily life providing recommendations for various purposes by generating ideas through texts. There are some writing tools exists in real world like jasper and writesonic which helps in generating ideas and news article[59]. There are AI generated voiceovers like Amazon polly, Google Text to speech which is used inconverting text to speech and speech to text. Before the existence of deep learning, traditional methods were used. Examples of these models are Rule-based system model, Template-based approach, NNgram language model, Hidden Markov Models (HMM) ruled-based system. There are some limitations of it.These modelslacked flexibility asthey cannot create and generate dynamic text and it is difficult to update neededmanual rule.Ngram language model is used in predictive

typing models in early mobile keyboards. Limitations of this model was the explosive memory requirement because of large amount of dataset used in it. So, this model cannot understand the longtermcontext. HMM used probability-based models for part-of-speech tagging and basic sentence formation and also helps in predict word. But there are certain limitations like this needed labelled dataset. After the existence of deep learning, all the problems faced by these modelshave been solved.Deep learning generation revolutionized text by introducing neural networks that learn patterns, context. and semantics automatically. Unlike traditional rulebased or statistical models, deep learning can understand context, generate coherent text, and adapt dynamically. N-gram model solve the problem of long-range dependent paragraph using RNN and LSTM or transformer like GPT and BERT. The problem of updating manualbased rule is also solved by neural network learn pattern. N-gram models failed with rare words or new phrases and could not generate creative or out-of-the-box text.To resolve this problem, they use word embeddings (like Word2Vec, GloVe, and Transformer embeddings) to understand word relationships and they can generate completely new, creative sentences.A detailed overview of various models used in Generation, its limitations and key takeaways is summarized in Table 5.

Models	Datasets	Key takeaways	Limitations	References
GANs	Speech Data	1.The usage of	1.Mapping 3D	[60]
		GANs is to	architectural designs into	
		generate new and	graph representations can	
		unique	be challenging.	
		architectural	2.Deep neural network	
		shapes, going past	training, particularly	
		traditional design	GANs, on graph-based	
		methods.	facts calls for excessive	

-	-	-		-		
Table 5:	Su	mmary of	popular	Studies or	Generation Task	

		2 The article	levels of computation	
		suggests a graph-	le vers of computation.	
		primarily based		
		godgot loorning		
		gauget learning		
		approach for 5D		
		architectural layout		
		spaces.	1 771 1:1:4	[(1]
VAES	Synthetic	1. The proposed	1. The validity of	[01]
	Data Output	structure,	synthesized records	
		SenseGen,	generated closely depends	
		generates synthetic	on the domain the	
		sensor statistics,	original information	
		permitting	comes from.	
		information	2. It continues to be	
		argumentation and	challenging to assess the	
		device mastering	pleasant and usability of	
		version education.	artificial statistics.	
		2.Employing deep		
		studying models,		
		SenseGen analyses		
		state-of-the-art		
		patterns in sensor		
		readings.		
RNNs	Audio-Based	1. Deep learning	1. The diversity-coherence	[62]
Autoencoders	Datasets	can facilitate	trade-off in generated	
		diverse purposes	music is still an issue.	
		like melody	2. The majority of current	
		composition,	models cannot integrate	
		polyphony,	real-time user feedback to	
		accompaniment,	any extent.	
		and counterpoint.		
		2.Generation		
		strategies such as		
		single-step		
		feedforward		
		processes, iterative		
		feedforward		
		strategies,		
		strategies, sampling		
		strategies, sampling strategies, and		
		strategies, sampling strategies, and input manipulation		
		strategies, sampling strategies, and input manipulation are employed to		
		strategies, sampling strategies, and input manipulation are employed to control the music		
		strategies, sampling strategies, and input manipulation are employed to control the music generation process.		
Point Cloud-	ShapeNet and	strategies, sampling strategies, and input manipulation are employed to control the music generation process.	1 Computational models	[63]
Point Cloud- Based	ShapeNet and ModelNet	strategies, sampling strategies, and input manipulation are employed to control the music generation process. 1. Deep learning has greatly	1. Computational models	[63]
Point Cloud- Based Models and	ShapeNet and ModelNet	strategies, sampling strategies, and input manipulation are employed to control the music generation process. 1. Deep learning has greatly improved the	1. Computational models based totally on deep learning for the	[63]
Point Cloud- Based Models and Voxel-Based	ShapeNet and ModelNet	strategies, sampling strategies, and input manipulation are employed to control the music generation process. 1. Deep learning has greatly improved the ability to create	1. Computational models based totally on deep learning for the technology of 3-D form	[63]
Point Cloud- Based Models and Voxel-Based Models	ShapeNet and ModelNet	strategies, sampling strategies, and input manipulation are employed to control the music generation process. 1. Deep learning has greatly improved the ability to create complex and	1. Computational models based totally on deep learning for the technology of 3-D form require	[63]

		out of reach of conventional modelling. 2.The survey categorizes cutting-edge models into several classes, giving a scientific evaluation of the methodologies in the field.	 which may not be less costly for everybody who's either a practitioner or a researcher. 2. The models won't generalize to new instructions of shapes, proscribing their application 	
LSTM and Hybrid Models	Stock Market Data and Electricity Consumption Dataset	1. DeepmodelsincludingRNNsandLSTMnetworksareproventooutperformconventionalstatisticalmodelsin the modelling ofsophisticatedtemporaldependencies.2. Blendingdeeplearningmodelswithclassicalforecastingtechniques or othermachinelearningtechniquescan result in betterforecastingaccuracyandstability.	 Deep learning models need vast amounts of high-quality training data, which in time series applications may not always be available. Deep learning models, if not properly regularized and validated, can overfit with small datasets. 	[64]
RNNs and CNNs SaShiMi	Music Generation and Unconditional Speech Generation	1. It integrates S4 layers with a multiscale structure to enable efficient modelling of long-range dependencies in audio data. 2. Resolves S4 autoregressive generation stability by modifying parameterization, keeping it stable	Autoregressive Instability: The standard S4 models are unstable during autoregressive generation and need to be parameter-tuned.	[65]

		while generating		
		audio.		
VAE	MIMIC-III &	1. VAEs and GANs	1. Models learn biases	[66]
MedGAN	Sutter EHR	are state-of-the-art	from actual datasets.	
		methods in	2. Excessive resource	
		artificial data	utilization for training	
		generation.	generative models.	
		2. Synthetic		
		privacy-preserving		
		data ensures secure		
		data sharing.		
LSTM	ImageNet	1. Chainer	1. Models will be prone to	[67]
		introduces	inherit real-world dataset	
		"Define-by-Run"	biases.	
		execution, making	2. Vast resource demand	
		deep learning	for training generative	
		models more	models.	
		flexible and easier		
		to use.		
		2. Optimized GPU		
		computation using		
		CuPy for speeding		
		up deep learning		
DEDT	D1/150	training.		F (0)
BERT	PY 150,	1. CodeXGLUE	Not having Real-World	[68]
ROBERTa	GitHub	has 14 datasets for	Edge Cases: Certain	
		toolvo ovoh oo oodo	datasets are generated	
		tasks such as code	synthetically and lack	
		translation and	veriations in coding	
		bug detection	variations in coding.	
		2 Integration of		
		pretrained models.		
		uses CodeBFRT		
		CodeGPT and		
		Encoder-Decoder		
		as baselines.		
RNN	WikiText-2	Inclusion of	Risk of Overfitting: The	[69]
		Recurrent Neural	bigger model, with its	
		Networks	greater number of	
		(RNNs): The bigger	parameters, can be more	
		architecture	overfitting, particularly	
		includes RNN	when dealing with	
		layers within the	smaller datasets.	
		Transformer		
		model, in the hope		
		of better capturing		
		sequential		
		relationships.		

2.6 Task 6-Reasoning

Reasoning refers to the application of deep neural network to enhance the ability of machines perform logical to inference, problem solving and decision making.It integrates deep learning techniques with reasoning process by allowing AI models to understand reasoning pattern and give answer or conclusion and also simulate thought process like human. It is also used in graph reasoning, common sense reasoning, and knowledge reasoning. The application of deep learning expands over various industries that copy understand reasoning and find accurate answer ability. It includes autonomous system which help in medicaldiagnosis self-driving cars. systemthat help doctors to assist in diagnosing disease by analysing medical record, financial analysis system which enhance the fraud detection and stock market intelligent decision system.In today's world, Tesla's AI model uses deep learning reasoning to analysis road condition and make drive decision[70]. IBM also uses deep learning reasoning in healthcare helping doctors within treatment[71]. Bank uses deep learning reasoning model to detect fraudulent transaction[72].Before learning, deep reasoning tasks were primarily handled by following system:Rule-Based using Systems-AI systems were built using

hand-crafted rules and logical reasoning (e.g.expert-systems, knowledge-based systems), Traditional ML-Algorithms such as decision trees, SVMs and Bayesian networks were used to model relationships in data. Logic-Based Reasoning such as first-order logic (FOL) and probabilistic graphical models, were used to infer conclusions from structured data. But there are limitations which this system cannot handle it. In Rule-based systems, rule should be manually defined which is not possible for complex tasks. Traditional ML models need extensive manual feature selection that was time-consuming and domain-specific also. These methods were inefficient in handling unstructured data images, videos. and like natural language.TheLogic-based reasoning systems mostly failed when encountering new scenarios or missing data. When deep learning came into existence, it overcome all kind of such problems like Automatic Feature Extraction. Deep learning models learn representations directly from raw data and eliminating the need for manual engineering.Neural feature networks. particularly architectures like CNNs and RNNs/Transformers[73] enable reasoning over complex data types. Deep learning especially transformer-based models. models like GPT, BERT[74]can process vast amounts of data efficiently.A detailed overview of various models used in Reasoning. its limitations. and kev takeaways are listed in Table 6.

Models	Dataset	Key takeaways	limitation	References
GPT-3,PaLM,	MathQA, CoqGym,	1.GPT-3,PaLM	1.Pre-educated	[75]
Codex,	GEOSTheoremQA	(Minerva),	Language Models	
RoBERTa, T5,	ScienceQA	Codex have	Are Not	
Transformer,		shown advanced	Optimized for	
Seq2Seq and		reasoning	Math Reasoning.	
Minerva,		talents.	2.Lack of	
GPT-3, MWP-		2.GPT-3,	Consistency and	
BERT,		Minerva, MWP-	Robustness in	
Bhaskara,		BERT, Codex	Mathematical	
NaturalProver,		carry out	Reasoning	
UniGeo,		properly but		

Table 0 : Summary of Popular Studies on Reasoning Tas
--

FinQANet		aren't optimized		
		for math		
		reasoning.		
BERT	DeepMind	1. Transformers	1. Math Word	[76]
RoBERTa	Mathematics Dataset	Achieve High	Problems (MWPs)	
T5	SVAMP	Performance	are challenging,	
GPT-3	HOList,ParaRules	however, Lack	and performance	
T5-11B		True Reasoning.	drops when	
RoBERTa		2. Models like	questions are	
GPT-3		BERT, GPT-	barely changed	
		three,	(e.g. SVAMP	
		ROBERTa, and	dataset).	
		T5 carry out	2. Fail on lengthy	
		properly on	sequences	
		many NLP tasks	requiring	
		however battle	reminiscence.	
		with deep		
	OLEV D	reasoning.		[88]
$\begin{array}{ccc} BEKI, & I3, \\ Do DEDTo \end{array}$	ATOMIC DeemMind	I. Neural	1. Deep learning is	[77]
KOBERTa Create Neurol	ATOMIC DeepMind Mathematics Dataset	networks like	still at the surface	
Graph Neural	Mathematics Dataset	(DEDT T5	level (lacks true	
INELWOIKS (CNING)		(BEKI, IJ, DOBERTO)	reasoning).	
(GININS), Deletionel		ROBERIA) are	2 Normal naturaliza	
Networks		good at learning	2. Neural networks	
Momory		statistical pattorna in data	correlations rather	
Augmented		2 They lack	then true logical	
Neural		2. They lack	deductions	
Networks		logical reasoning	deddetions.	
(MANN)		and fail to		
		systematically		
		generalize		
		beyond their		
		training data		
RTNs &	DBpedia	1. Classical	1.RTNs do not	[78]
RNTNs		logic-based	guarantee strict	[]
		reasoning is	logical correctness	
		correct but slow	like traditional	
		and does not	reasoning systems.	
		handle		
		incomplete	2. RTNs struggle	
		information	with nested logical	
		well.	rules, negation,	
		2. Relational	and deep inference	
		Tensor	chains.	
		Networks –		
		RTNs can		
		substitute rule-		
		based reasoning		

		for faster and more scalable ontology inference.		
CNN, LSTM, Transformer and EDNNs, FDNNs, RDNNs	MNIST DatasetsMedicalAI DatasetsCybersecurity Datasets (e.g., CICIDS2017, NSL- KDD)	1. Traditional notion/prooftheorieswereusedforreasoningbelowuncertainty.2.2. BeliefTheoriesTheoriesCanEnhanceDeepLearningModelsandThreevarietiesofuncertainty-awareawaredeepstudyingfashionsmentioned.	1. Handling noisy or opposed statistics stays a mission, specifically in hostile assaults on AI models. 2. Uncertainty estimation methods can extend biases if not cautiously designed.	[79]
CNN, MLP, LSTM and EDNNs, FDNNs, RDNNs	Sandia Matrices,RAVEN- FAIRPGM	1. Understanding uncertainty is fundamental to effective selection-making in AI and deep mastering. 2. Fuzzy Deep Neural Networks (FDNNs) – Uses Fuzzy Logic for indistinct data and Rough Deep Neural Networks (RDNNs) – Uses Rough Set Theory to version imprecise or incomplete records	1. Deepstudying modelsmodelsoverfituniqueRPMsystemsratherthangainingknowledgeofrealabstractabstractreasoning.2. PGMdatasetexposesgeneralizationdisasters, asmanymodelsfailonfeaturedistributions.	[80]

Transformer	Multiple VOA	1 Transformer-	1 The model	[81]
Transformer	datasets	hased approach	struggles slightly	[01]
	dulubelb,	that enhances	with counting and	
		visual reasoning	numerical	
		through self-	comparison tasks.	
		attention and co-	achieving lower	
		attention	accuracy in	
		mechanisms	"Compare	
		model iteratively	numbers" type	
		refines its	question on the	
		understanding of	CLEVR dataset.	
		images and text.	2. While	
		2. Using custom	Transformers	
		tokens improves	excel in capturing	
		how the model	relationships, they	
		integrates visual	are	
		and textual	computationally	
		features for	expensive and	
		better	require high-end	
		comprehension.	hardware for	
			training and	
Trabaid	Cudalan Datagata	1 Deen studying	1 While the	[02]
Hydrid	Datasets Drotoin MDNN	1. Deep studying	1. while the	[82]
Logical Model	dataset	reasoning	scalable fixing	
Logical Wiodel	ualaset	permits solving	very big NP-hard	
		NP-tough issues	problems with	
		more effectively.	many variables	
			nevertheless poses	
		2.E-NPLL loss	computational	
		overcomes	stressful	
		barriers of	conditions,	
		conventional	especially in the	
		pseudo-	course of	
		loglikelihood	inference.	
		features,	2. The E-NPLL	
		enabling better	loss, however	
		logical	deciding on the	
		constraints.	proper good	
			(wide cort of	
			omitted variables)	
			is crucial affecting	
			convergence	
			tempo.	
RNNs, LSTM	Kinsources,	1. The paper	1.It struggles	[83]
	IMDb,CLUTRR	offers a hybrid	while dealing with	
	(Commonsense	version that	large-scale	
	Reasoning	combines Neural	understanding	
	Benchmark	Networks with	bases with	

		First-Order	hundreds of	
		Predicate Logic	thousands of facts.	
		for analogical	2.The model is	
		reasoning.	quite specialized	
		2. Analogical	for logical	
		Reasoning	inference and	
		Outperforms	dependent	
		Traditional	symbolic	
		Deductive and	responsibilities,	
		Inductive	making it less	
		Methods.	effective for	
			unstructured	
			records.	
CNN, RNN	Clevr	1. CBN-based	1. Struggling with	[84]
		models beat	longer, more	
		humans on	involved	
		CLEVR (97.6%	problems.	
		accuracy).	2. There is no	
		2. Acquire multi-	direct hierarchical	
		step reasoning	modelling, as	
		without being	compared to	
		taught explicit	domain-specific	
		compositional	architectures.	
		structure.		

2.7 Task 7-Text Classification

Text classification is a type of NLP task through which the deep learning algorithm predicts pre-tagged categories or labels for text data. It is widely used in task analysis such as sentiment analysis [89,94], spam filtering [85], topic classification [97], intent detection [87], and document classification [86]. Text type in deep learning has confirmed enormous effects throughout multiple domains, presenting greater automation, security, and efficiency in numerous applications. In sentiment evaluation, groups leverage class models to research patron evaluations from product opinions and social media. facilitating advanced service techniques and user level [105]. Similarly, junk mail detection employs text categories for filtering phishing emails and fraudulent SMS, thereby strengthening cybersecurity measures [85]. In huge-scale document management, subject matter categorization aids in organizing news articles, criminal documents, and studies papers, allowing

efficient content material retrieval and recommendation systems [86]. Intent reputation in AI-driven conversational structures, which include chatbots and virtual assistants, enhances computerized question resolution by way of classifying user intents, optimizing response accuracy [87]. Moreover, medical textual content type assists in categorizing clinical information, sickness diagnosis reviews and drug discovery research, thereby supporting healthcare specialists in selection-making [88]. The developing challenge of misinformation is addressed through faux information detection fashions, which assess content credibility and prevent the unfolding of fake data on virtual structures [87]. These packages spotlight the transformative function of textual content classification, powered with the aid of deep gaining knowledge of architectures which include CNNs, RNNs, LSTMs, and Transformers, in advancing statistics processing and selection-making industries. Traditional across text

classification methods were based on machine learning models such as Naïve Bayes, SVMs, Decision Trees, and Latent Dirichlet Allocation (LDA), usually in conjunction with feature extraction methods such as Bag of Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF). These methods suffered from various shortcomings such as too much reliance on manual feature engineering, inability to retain word order and contextual sense, poor accuracy for Table 7. Summary of Popular Studies on Classification Task

complex and large datasets, and poor generalizability for wide-ranging applications. То counter these shortcomings, deep learning methods such as RNNs, LSTMs and Gated Recurrent Units (GRU) were introduced to maintain sequential dependencies in text, to counter the issue of the absence of awareness about context in conventional models.A detailed overview of various models used in Classification, its limitations and key takeaways are provided in Table 7.

Models	Datasets	Key takeaways	Limitations	References
LSTM,	IMDB,	1.Covers sentiment	1.Large-scale deep	[89]
GRU	Yelp,	evaluation, information	studying fashions	
Hybrid	Amazon	categorization, QA, and	require enormous	
Models	Reviews	natural language	assets for education	
		inference (NLI).	and inference.	
		2.Organized into	2.Models rely upon	
		categories like RNNs,	massive classified	
		CNNs, Transformers,	datasets, making them	
		Capsule Networks, and	difficult to use in low-	
		Siamese Networks.	aid settings.	
		Benchmarks provide	-	
		insights into fine-		
		performing models for		
		precise NLP duties.		
BERT	TREC QA,	1.In this article we are	1.Sometimes struggles	[90]
Seq2Seq	Bing	learning how to integrate	in understanding of	
1 1	U	deep learning techniques	contexts, especially in	
		especially about	longerpassages.	
		transformer models such	2.It requires large and	
		as BERT and GPT which	high-quality datasets	
		has enhanced the MRC	which may not be	
		capabilities.	easily available.	
		2. There are large data		
		sets in this paper which		
		generously helps in		
		development and in		
		training of MRC models		
		efficiently.		
DBNs and	Stanford	1. This paper extracts the	Sometimes models	[91]
LSTM	Natural	hierarchical features of	struggle in sequencing	
	Language	models very effectively.	data efficiently.	
	Inference	2.DBNs is good for text	2.Requires time for	
	(SNLI)	extraction and	training as data sets	
	(/	classification.	have large amount of	
			data.	

DCNN CNN HAN (Sentiment)	Sohu News	 This paper shows how deep learning improves text classification by eliminating the text manually and enhancing accuracy. CNN and RNN captures sequential dependencies and enhance interpretability. 	 Models requires high power for performance. Models are lacking in transparency in decision making topics. 	[92]
Caps-Net- based	Amazon Reviews (User product reviews) YouTube Music Ratings	 Caps-Net improve the CNN classification as it maintains relationship and avoid pooling operation. It uses a special feature called gated sharing unit which filters out irrelevant features and improve efficiency. 	 It is more resource intensive and complex than RNN and CNN method. It depends heavily on high quality datasets. 	[93]
MLP and CNN	Sougo Lab's Sohu News	 Text classification is important in spam filtering, sentiment analysis, and information retrieval. The application of CNN & RNN architectures enhances text classification accuracy. 	 Limited to Chinese content only; other languages subject to varying penalties. Pretrained embeddings required for best accuracy. 	[94]
CRNN HAN (Sentiment) VDCNN	Yahoo Answers	 VDCNN is a improved version of CNN for text classification and improve performance over CNNs. Directly works on Character instead of words for better working on different languages. 	 As it uses advance version of CNN, hence require more power and time. It struggles with tasks that requires long range dependencies. 	[95]
BERT MTL (Sentiment)	IMDB, MR, Amazon	 AMTL model helps in improving feature separation between shared and task specific spaces. As data is shared, so it can be reused for more tasks. 	1. If data are not set in proper order than it can face overfitting issues.	[96]

RNNs	EHRs	 The study show us how we can deal with imbalanced class distribution with help of text classification. Various models are used to classify texts. 	 As it uses specific datasets, so finding may not apply on other domains. It uses medical notes which compromises with personal information of others and raises privacy concerns. 	[97]
Bi-LSTM (Sentiment) DCLSTM	8,292 news articles	1. Thesemodelsoutperformsoldermodelswhichhelpsinachievinghigheraccuracy.2. It2. ItusescommonfeaturesfeaturesofCNkdmN,LSTMLSTMandMLPbycombiningthemhelpsincapturingbetterrelationshipintextdata.	1. Although8,292newsarticlesused for data set, butstill, thisissmallnumberfortrainingandmayaffecttheresults.2. Multipledeeplearningmodelsusedwhichobviouslyincreasestheloadonmachineandaffectperformance	[98]

3. Discussion & Conclusion

This study systematically reviews deep learning tasks. including reading comprehension, translation. text generation, question answering, reasoning, summarization, and classification. It highlights the significant advancements made in these areas, alongside the persistent challenges that remain. Over time, numerous generalized and specialized models and diverse datasets have been developed and utilized to address these specific tasks effectively. However, the variability in design and methodology across these models and datasets demonstrates the complexity of developing solutions that can be universally applied. A snapshot of the observed models and datasets is provided in Figure S1-S8. The models under review, ranging from transformers to RNNs, all have something to offer in terms of strength, with some being more scalable, and yet others having greater contextsensitive task accuracy. Core datasets, which have been instrumental in model training, are central to determining the outcome of deep learning models. They form the basis for measuring model performance, directing researchers toward solving specific challenges inherent in various domains. Yet, dataset design itself brings with it limitations-bias, domain specificity, and generalization issues-that must be given careful thought when choosing or designing datasets for taskspecific use. Assessment of models and their respective datasets point to the general trend of incremental performance improvement over multiple tasks, with models, transformer-based especially BERT, GPT, and T5, dominating tasks such as reading comprehension, question answering, and summarization. These models tend to utilize large-scale, highvariance datasets like SOuAD, GLUE, and CNN/Daily Mail, offering an abundance of training data but also revealing some

limitations of in terms domain transferability and bias. For generation and translation tasks, GPT-based models excel but continue to struggle with nuances of languages and produce contextually consistent results in lengthy text formats. Reasoning tasks, though making advancements through models such as T5 and GPT-3. continue need to improvements of logical in terms reasoning strength and common-sense Summarization inference. and classification work perform well on extractive and abstractive tasks. Despite the strengths, concerns exist for factual accuracy and coherence retention in automatic summaries, particularly in domain-specialized cases. Conversely, many state-of-the-art models lack proper handling of aspects like data bias, model bias, heavy computationally demanding work, and lesser explainability, which negatively contribute to their utilization in practical use cases where there is a demand for transparency as well as economic resource optimization.

Although task-specific models have demonstrated significant accuracy and efficiency improvements, the review calls out a number of key areas for further investigation. These include improving generalization across languages and domains, dealing with ethical issues such as bias and fairness, and enhancing interpretability to provide transparency in decision-making. Moreover, merging multimodal datasets and models, applying transfer learning, and making models adaptable to low-resource languages are areas that show promise for further developing deep learning models in these tasks.

References

1. Rane, N. L., Mallick, S. K., Kaya, O., & Rane, J. (2024). Applications of deep learning in healthcare, finance, agriculture, retail, energy, manufacturing, and transportation.

- 2. Truyens, M., & Van Eecke, P. (2014). Legal aspects of text mining. *Computer law & security review*, *30*(2), 153-170
- 3. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. *Advances in neural information processing systems*, 27.
- 4. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). *Improving language understanding by generative pre-training* (2018).
- 5. Lu, J., & Rodriguez, I. (2024, March). Deep Manifold Learning for Reading Comprehension and Logical Reasoning Tasks with Polytuplet Loss. In *Future of Information and Communication Conference* (pp. 337-345). Cham: Springer Nature Switzerland
- Perkoff, E. M., Bhattacharyya, A., Cai, J., & Cao, J. (2023, July). Comparing Neural Question Generation Architectures for Reading Comprehension. In Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023) (pp. 556-566).
- Dhingra, B., Liu, H., Salakhutdinov, R., & Cohen, W. W. (2017). A comparative study of word embeddings for reading comprehension. *arXiv* preprint arXiv:1703.00993.
- Liu, S., Zhang, X., Zhang, S., Wang, H., & Zhang, W. (2019). Neural machine reading comprehension: Methods and trends. *Applied Sciences*, 9(18), 3698.
- 9. Ren, F., Liu, Y., Li, B., Wang, Z., Guo, Y., Liu, S., ... & Wang, B. (2022). Deep understanding based multi-document machine reading comprehension. *Transactions on Asian* and Low-Resource Language Information Processing, 21(5), 1-21.
- 10. Luu, S. T., Van Nguyen, K., Nguyen, A. G. T., & Nguyen, N. L. T. (2021, January). An experimental study of deep neural network models for vietnamese multiple-choice reading comprehension. In 2020 IEEE Eighth International Conference on

Communications and Electronics (ICCE) (pp. 282-287). IEEE.

- 11. Guo, X. Y., Li, Y. F., & Haffari, G. (2022). Complex reading comprehension through question decomposition. *arXiv* preprint *arXiv:2211.03277*.
- 12. Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., & Hu, G. (2016). Attentionover-attention neural networks for reading comprehension. *arXiv preprint arXiv:1607.04423*.
- 13. Qiu, B., Chen, X., Xu, J., & Sun, Y. (2019). A survey on neural machine reading comprehension. *arXiv preprint arXiv:1906.03824*.
- 14. Huang, L., Bras, R. L., Bhagavatula, C., & Choi, Y. (2019). Cosmos OA: Machine reading comprehension with contextual commonsense reasoning. arXiv preprint arXiv:1909.00277.
- 15. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. *arXiv* preprint *arXiv:1409.0473*.
- 16. Csaky, R. (2019). Deep learning based chatbot models. *arXiv preprint arXiv:1908.08835*.
- 17. Li, L. (2024, August). In-Depth Exploration of the Advantages of Neural Networks in English Machine Translation. In 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 1418-1423). IEEE.
- 18. Barone, A. V. M., Helcl, J., Sennrich, R., Haddow, B., & Birch, A. (2017). Deep architectures for neural machine translation. *arXiv* preprint *arXiv:1707.07631*.
- Britz, D., Goldie, A., Luong, M. T., & Le, Q. (2017). Massive exploration of neural machine translation architectures. *arXiv* preprint *arXiv:1703.03906*.
- Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., & Chao, L. S. (2019). Learning deep transformer

models for machine translation. *arXiv* preprint arXiv:1906.01787

- 21. Meng, F., & Zhang, J. (2019, July). DTMT: A novel deep transition architecture for neural machine translation. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 33, No. 01, pp. 224-231).
- 22. Yang, S., Wang, Y., & Chu, X. (2020). A survey of deep learning techniques for neural machine translation. *arXiv* preprint *arXiv:2002.07526*.
- 23. Ananthanarayana, T., Srivastava, P., Chintha, A., Santha, A., Landy, B., Panaro, J., ... & Nwogu, I. (2021). Deep learning methods for sign language translation. ACM Transactions on Accessible Computing (TACCESS), 14(4), 1-30.
- 24. Popel, M., Tomkova, M., Tomek, J., Kaiser, Ł., Uszkoreit, J., Bojar, O., & Žabokrtský, Z. (2020). Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals. *Nature communications*, 11(1), 1-15.
- 25. Zhang, T. (2022). Deep learning classification model for English translation styles introducing attention mechanism. *Mathematical Problems in Engineering*, 2022(1), 6798505.
- Sharma, S., Diwakar, M., Singh, P., Singh, V., Kadry, S., & Kim, J. (2023). Machine translation systems based on classical-statistical-deep-learning approaches. *Electronics*, 12(7), 1716
- 27. Sarwar, S. M., Bonab, H., & Allan, J. (2019). A multi-task architecture on relevance-based neural query translation. *arXiv* preprint *arXiv:1906.06849*
- Abdel-Salam, S., & Rafea, A. (2022). Performance study on extractive text summarization using BERT models. Information, 13(2), 67
- 29. Nallapati, R., Zhou, B., Gulcehre, C., & Xiang, B. (2016). Abstractive text

summarization using sequence-tosequence rnns and beyond. arXiv preprint arXiv:1602.06023

- 30. Luca, M. (2015). User-generated content and social media. In Handbook of media Economics (Vol. 1, pp. 563-592). North-Holland.
- Anand, D., & Wagh, R. (2022). Effective deep learning approaches for summarization of legal texts. *Journal of King Saud University-Computer and Information Sciences*, 34(5), 2141-2150
- 32. Kedzie, C., McKeown, K., & Daume III, H. (2018). Content selection in deep learning models of summarization. *arXiv* preprint *arXiv:1810.12343*.
- 33. Apostolidis, E., Adamantidou, E., Metsai, A. I., Mezaris, V., & Patras, I. (2021). Video summarization using deep neural networks: A survey. *Proceedings of the IEEE*, 109(11), 1838-1863
- 34. Ma, C., Zhang, W. E., Guo, M., Wang, H., & Sheng, Q. Z. (2022). Multi-document summarization via deep learning techniques: A survey. ACM Computing Surveys, 55(5), 1-37
- 35. Suleiman, D., & Awajan, A. (2020). Deep learning based abstractive text summarization: approaches, datasets, evaluation measures, and challenges. *Mathematical problems in engineering*, 2020(1), 9365340
- 36. Liu, M., Ma, Z., Li, J., Wu, Y. C., & Wang, X. (2024). Deep-Learning-Based Pre-training and Refined Tuning for Web Summarization Software. *IEEE Access*
- 37. Miller, D. (2019). Leveraging BERT for extractive text summarization on lectures. *arXiv* preprint *arXiv:1906.04165*.
- 38. Zhang, M., Zhou, G., Yu, W., Huang, N., & Liu, W. (2022). A comprehensive survey of abstractive text summarization based on deep learning. *Computational intelligence and neuroscience*, 2022(1), 7132226

- Zhong, S. H., Liu, Y., Li, B., & 39. Long, J. (2015). Query-oriented unsupervised multi-document summarization learning via deep model. *Expert* with systems applications, 42(21), 8146-8155
- 40. Bano, S., Khalid, S., Tairan, N. M., Shah, H., & Khattak, H. A. (2023). Summarization of scholarly articles using BERT **BiGRU**: Deep and learning-based extractive approach. Journal of King Saud University-Computer and Information Sciences, 35(9), 101739
- 41. Sukhbaatar, S., Weston, J., & Fergus, R. (2015). End-to-end memory networks.). Improvements in neural information processing systems, 28
- 42. Huang, K., Altosaar, J., & Ranganath, R. (2019). Clinicalbert: Modeling clinical notes and predicting hospital readmission. arXiv preprint arXiv:1904.05342
- 43. Yin, D., Dong, L., Cheng, H., Liu, X., Chang, K. W., Wei, F., & Gao, J. (2022). A survey of knowledgeintensive nlp with pre-trained language models. arXiv preprint arXiv:2202.08772
- 44. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. *arXiv* preprint *arXiv:1409.0473*.
- 45. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-4186)
- 46. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-totext transformer. *Journal of machine learning research*, 21(140), 1-67.

- 47. Mutabazi, E., Ni, J., Tang, G., & Cao, W. (2021). A review on medical textual question answering systems based on deep learning approaches. *Applied Sciences*, 11(12), 5456
- 48. Hakimov, S., Jebbara, S., & Cimiano, P. (2019, January). Evaluating architectural choices for deep learning approaches for question answering over knowledge bases. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC) (pp. 110-113). IEEE
- Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., & Garcia-Rodriguez, J. (2018). A survey on deep learning techniques for image and video semantic segmentation. *Applied Soft Computing*, 70, 41-65.
- 50. Zhang, C., Lai, Y., Feng, Y., & Zhao, D. (2021). A review of deep learning in question answering over knowledge bases. *AI Open*, *2*, 205-215.
- 51. Abbasiantaeb, Z., & Momtazi, S. (2021). Text-based question answering from information retrieval and deep neural network perspectives: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(6), e1412
- 52. Stroh, E., & Mathur, P. (2016). Question answering using deep learning. *Unpublished*
- 53. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: review, opportunities and challenges. *Briefings in bioinformatics*, 19(6), 1236-1246
- 54. Huang, Z., Xu, S., Hu, M., Wang, X., Qiu, J., Fu, Y., ... & Wang, C. (2020). Recent trends in deep learning based open-domain textual question answering systems. *IEEE Access*, *8*, 94341-94356
- 55. Palangi, H., Smolensky, P., He, X., Deng, L., & Redmond, W. A. (2017). Deep learning of grammatically-interpretable representations through question-

answering. *arXiv* preprint arXiv:1705.08432.

- 56. Feng, M., Xiang, B., & Zhou, B. October). Distributed deep (2016, learning for question answering. In Proceedings of the 25th ACM Conference International on on Information and Knowledge Management (pp. 2413-2416).
- Jeyaraj, S., & Raghuveera, T. (2022). A deep learning based end-toend system (F-Gen) for automated email FAQ generation. *Expert Systems* with Applications, 187, 115896.
- Liu, J., Snodgrass, S., Khalifa, A., Risi, S., Yannakakis, G. N., & Togelius, J. (2021). Deep learning for procedural content generation. *Neural Computing and Applications*, 33(1), 19-37.
- 59. Muhammed, A., Hassan, M., Soliman, W., Ibrahim, A., & Abdelaal, S. H. (2025). The potential use of deep learning in performing autocorrection of setup errors in patients receiving radiotherapy. *Radiography*, *31*(2), 102881
- 60. As, I., Pal, S., & Basu, P. (2018). Artificial intelligence in architecture: Generating conceptual design via deep learning. *International Journal of Architectural Computing*, *16*(4), 306-327.
- 61. Alzantot, M., Chakraborty, S., & Srivastava, M. (2017, March). Sensegen: A deep learning architecture for synthetic sensor data generation. In 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (pp. 188-193). IEEE.
- Briot, J. P., Hadjeres, G., & Pachet,
 F. D. (2020). *Deep learning techniques* for music generation (Vol. 1). Heidelberg: Springer
- 63. Wang, A., Dong, J., Lee, L. H., Shen, J., & Hui, P. (2024). A Survey on Deep Learning for Design and Generation of Virtual Architecture. *ACM Computing Surveys*, *57*(2), 1-41.

- 64. Torres, J. F., Hadjout, D., Sebaa,
 A., Martínez-Álvarez, F., & Troncoso,
 A. (2021). Deep learning for time series forecasting: a survey. *Big Data*, 9(1), 3-21.
- 65. Goel, K., Gu, A., Donahue, C., & Ré, C. (2022, June). It's raw! audio generation with state-space models. In *International Conference on Machine Learning* (pp. 7616-7633). PMLR
- 66. Lu, Y., Shen, M., Wang, H., Wang, X., van Rechem, C., Fu, T., & Wei, W. (2023). Machine learning for synthetic data generation: a review. *arXiv* preprint arXiv:2302.04062.
- Tokui, S., Oono, K., Hido, S., & 67. Clayton, J. (2015, December). Chainer: next-generation open source a framework for deep learning. In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS) (Vol. 5, pp. 1-6).
- Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., ... & Liu, S. (2021). Codexglue: A machine learning benchmark dataset for code understanding and generation. arXiv preprint arXiv:2102.04664
- 69. Li, H., Adele, Y. C., Liu, Y., Tang, D., Lei, Z., & Li, W. (2019, November). An augmented transformer architecture for natural language generation tasks. In 2019 International Conference on Data Mining Workshops (ICDMW) (pp. 1-7). IEEE.
- 70. Hind, S. (2019). Digital navigation and the driving-machine: supervision, calculation, optimization, and recognition. *Mobilities*, *14*(4), 401-417
- 71. Jayatilake, S. M. D. A. C., & Ganegoda, G. U. (2021). Involvement of machine learning tools in healthcare decision making. *Journal of healthcare engineering*, 2021(1), 6679512.
- 72. Parkar, E., Gite, S., Mishra, S., Pradhan, B., & Alamri, A. (2024). Comparative study of deep learning

explainability and causal ai for fraud detection. International Journal on Smart Sensing and Intelligent Systems, (1).

- 73. Guo, Z., Wan, Z., Zhang, Q., Zhao, X., Zhang, Q., Kaplan, L. M., ... & Cho, J. H. (2024). A survey on uncertainty reasoning and quantification in belief theory and its application to deep learning. *Information Fusion*, 101, 101987.
- 74. Helwe, C., Clavel, C., & Suchanek,
 F. (2021). Reasoning with transformerbased models: Deep learning, but shallow reasoning. In *International Conference on Automated Knowledge Base Construction (AKBC).*)
- 75. Lu, P., Qiu, L., Yu, W., Welleck, S., & Chang, K. W. (2022). A survey of deep learning for mathematical reasoning. *arXiv* preprint arXiv:2212.10535.
- 76. Helwe, C., Clavel, C., & Suchanek, F. (2021). Reasoning with transformerbased models: Deep learning, but shallow reasoning. In *International Conference on Automated Knowledge Base Construction (AKBC).*
- 77. Tran, T., Le, V., Le, H., & Le, T. M. (2021, August). From deep learning to deep reasoning. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining* (pp. 4076-4077).
- 78. Hohenecker, P., & Lukasiewicz, T. (2017). Deep learning for ontology reasoning. *arXiv* preprint *arXiv:1705.10342*.
- Guo, Z., Wan, Z., Zhang, Q., Zhao, X., Zhang, Q., Kaplan, L. M., ... & Cho, J. H. (2024). A survey on uncertainty reasoning and quantification in belief theory and its application to deep learning. *Information Fusion*, 101, 101987.
- A Survey on Raven's Progressive Matrices- Małkiński, M., & Mańdziuk, J. (2022). Deep learning methods for abstract visual reasoning: A survey on

raven's progressive matrices. ACM Computing Surveys.

- Zakari, R. Y., Owusu, J. W., Qin, K., He, T., & Luo, G. (2025). Seeing and Reasoning: A Simple Deep Learning Approach to Visual Question Answering. *Big Data Mining and Analytics*, 8(2), 458-478.
- Defresne, M., Barbe, S., & Schiex, T. (2023). Scalable coupling of deep learning with logical reasoning. *arXiv* preprint arXiv:2305.07617.
- 83. Based Symbolic Processing -Honda, H., & Hagiwara, M. (2021). Analogical reasoning with deep learning-based symbolic processing. *IEEE Access*, 9, 121859-121870.
- 84. Perez, E., De Vries, H., Strub, F., Dumoulin, V., & Courville, A. (2017). Learning visual reasoning without strong priors. *arXiv* preprint *arXiv:1707.03017*.
- 85. Almeida, T. A., Hidalgo, J. M. G., & Yamakami, A. (2011, September). Contributions to the study of SMS spam filtering: new collection and results. In Proceedings of the 11th ACM symposium on Document engineering (pp. 259-262)
- 86. Joachims, T. (1998, April). Text categorization with support vector machines: Learning with many relevant features. In European conference on machine learning (pp. 137-142). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.
- 88. Uzuner, Ö., Luo, Y., & Szolovits, P. (2007). Evaluating the state-of-the-art in automatic de-identification. Journal of the American Medical Informatics Association, 14(5), 550-563.
- 89. Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep learning-based text classification: a

comprehensive review. ACM computing surveys (CSUR), 54(3), 1-40.

- 90. Li, Q., Peng, H., Li, J., Xia, C., Yang, R., Sun, L., ... & He, L. (2022). A survey on text classification: From traditional to deep learning. *ACM Transactions on Intelligent Systems and Technology (TIST), 13*(2), 1-41.
- 91. Zulqarnain, M., Ghazali, R., Hassim, Y. M. M., & Rehan, M. (2020).
 A comparative review on deep learning models for text classification. *Indones. J. Electr. Eng. Comput. Sci*, 19(1), 325-335
- 92. Wu, H., Liu, Y., & Wang, J. (2020). Review of Text Classification Methods on Deep Learning. *Computers, Materials & Continua*, 63(3).
- 93. Jacob, I. J. (2020). Performance evaluation of caps-net based multitask learning architecture for text classification. *Journal of Artificial Intelligence*, 2(01), 1-10.
- 94. Li, S., & Gong, B. (2021). Word embedding and text classification based on deep learning methods. In *MATEC* web of conferences (Vol. 336, p. 06022). EDP Sciences. Conneau, A., Schwenk, H., Barrault, L., & Lecun, Y. (2016). Very deep convolutional networks for text classification. arXiv preprint arXiv:1606.01781.
- 95. Liu, P., Qiu, X., & Huang, X. (2017). Adversarial multi-task learning for text classification. *arXiv preprint arXiv:1704.05742*.
- 96. Lu, H., Ehwerhemuepha, L., & Rakovski, C. (2022). A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance. *BMC medical research methodology*, 22(1), 181.
- 97. Zhang, M. (2021). Applications of deep learning in news text classification. *Scientific Programming*, 2021(1), 6095354.
- 98. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).

Attention is all you need. Advances in neural information processing systems, 30.

- 99. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
- 100. Colin, R. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. *J. Mach. Learn. Res.*, 21.
- 101. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2019).
 Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv: 1910.13461.
- 102. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert:

Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-4186).

- 103. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., ... & McGrew, B. (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.
- 104. Bing, L. (2012). Sentiment analysis and opinion mining (synthesis lectures on human language technologies). University of Illinois: Chicago, IL, USA.

Figure S1: Popular Deep Learning Models for the Reading Comprehension Task

Supplementary Data

Figure S2: Popular Deep Learning Models for the Translation Task

Figure S3: Popular Deep Learning Models for the Summarization Task

Figure S4: Popular Deep Learning Models for the Question & Answering Task

Figure S5: Popular Deep Learning Models for the Generation Task

Figure S6: Popular Deep Learning Models for the Reasoning Task

Figure S7: Popular Deep Learning Models for the Text Classification Task

Figure S8: Popular Datasets used for different Deep Learning Tasks