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Abstract: Algorithms for optimization are crucial for
solving complex numerical problems in many
scientific and technical domains. In this paper local
and global search, respectively, metaheuristic
techniques Particle Swarm Optimization (PSO) and
the Grasshopper Optimization Algorithm (GOA) have
demonstrated significant potential. Every technique
has drawbacks, though; PSO might not be able to
explore high-dimensional search spaces, whereas
GOA frequently suffers from premature convergence.
In order to improve optimization performance, this
study suggests a hybridized strategy that combines
GOA's exploratory nature with PSO's exploitative
capabilities.

The two techniques are dynamically balanced by the
hybrid model, which improves convergence and
resilience when dealing with high-dimensional and
multimodal optimization issues. Benchmark functions
are used for performance evaluation, and the results
show notable gains in convergence time, solution
accuracy, and stability when compared to solo GOA,
PSO, and other traditional optimization methods. For
numerical optimization problems in the real world,
such as financial modelling, machine learning
parameter tweaking, and engineering design, the
suggested hybrid technique presents a viable answer.

Keywords: GOA, PSO, Benchmarks Functions,
Global Optimization, Nature Based Algorithm,
Hybridization.

1.Introduction
Optimization is essential to the resolution of
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challenging real-world issues in a variety of
domains, including bioinformatics, machine
learning, engineering, and finance.

Grasshopper Optimization Algorithm (GOA)
was inspired by a foraging and swarming
behaviour of a grasshopper. In order to identify
near-optimal solutions in complex search
spaces, a variety of metaheuristic algorithms
have been developed in response to the demand
for effective optimization strategies. As
Grasshopper Optimization Algorithm (GOA)
and Particle Swarm Optimization (PSO) are
nature inspired algorithm these algorithms
imitate natural processes. Particle Swarm
Optimization (PSO) and the Grasshopper
Optimization Algorithm (GOA) are two of them
that have drawn a lot of interest because of how
well they solve numerical optimization issues.
These algorithms work better in long range and
sudden movement.

By striking a balance between local and global
searches, GOA, which was inspired by the
swarming behaviour of grasshoppers, thrives in
exploration. It frequently has early stalling in
local optima and sluggish convergence, though.
Conversely, PSO, which is modelled after the
social behaviour of fish schools or bird flocks,
is very effective at exploitation and
convergence, but it might not have a diverse
range of search agents, which could result in
less-than-ideal solutions in intricate,
multimodal environments.
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In order to address difficult optimization issues, two ari et
well-known metaheuristic approaches that derive al
principles from occurrences in nature are the
Grasshopper Optimization Algorithm (GOA) and FUNCTION TABLE:

Particle Swarm Optimization (PSO). PSO was
encouraged by the social dynamics of fish schooling
and bird flocking, although GOA matches the swarming
behaviour of grasshoppers. The goal of integrating these
algorithms is to build on their unique advantages, which
could result in optimization solutions that are more
reliable as well as efficient [7],[14].
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Table 2. Standard UM Benchmark Function

3.Result and Discussion
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In this approach firstly we tested original algorithm
on 23 benchmark functions and then hybridized
GOA algorithm with PSO algorithm and then
compared the results of both algorithm from that
we find search space and convergence curve which
are given below.
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i » . fi Result Table : Original GOA Vs
= X - i Hybrid_GOA_PSO
= | ybrid_GOA_
o PN - i
e, g i Canwen UEREEe aRRe Function Original Value Hybrid
s Vet o st g o g o Number Value
v 4
- 4 v F1 2.60E+08 0.062468
1
' i F2 0.1217 0.091837
i
; 3 F3 1.67E+07 0.91837
= I . F4 0.00014152 0.12599
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F7 0.0017489 -1976.465
F8 -1476.4761 -1877.766
F9 4.0263 2.9074
F10 1.6462 0.26768
F11 0.098556 0.070532
F12 8.98E+06 0.0036155
F13 3.97E+08 0.0024125
F14 0.998 0.016936
F15 0.0006642 0.0013
F16 -1.0316 0.0008792
F17 0.39789 1.3016
F18 3 3.0032
F19 -3.8628 -3.8547
F20 -3.0867 -3.1269
F21 -5.0552 -10.0065
F22 -10.4029 -10.2339
F23 -10.5364 -10.4744

Table 3. Results for Original GOA vs Hybrid GOA with
PSO

4.Conclision

Hybridization of Grasshopper Optimization Algorithm
(GOA) with Practical Swarm Optimization (PSO)
Algorithm was tested on 23 Benchmark functions (F1-
F23) out of which it performs better and provides
optimal values in 15 functions which was F1, F2, F3,
F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F20, F21.
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