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Abstract 

Spiking Neural Networks (SNNs) offer a 

promising path toward energy-efficient, event-

driven computation inspired by the human brain. 

However, conventional training approaches in 

SNNs - such as unsupervised Spike-Timing-

Dependent Plasticity (STDP) and surrogate 

gradient backpropagation—often face a trade-off 

between biological plausibility and task-specific 

performance. This paper introduces a novel bio-

hybrid learning framework that integrates local 

STDP-based learning with global error-driven 

backpropagation to overcome this limitation. The 

proposed Adaptive STDP (A-STDP) algorithm 

dynamically adjusts synaptic updates using both 

temporal spike relationships and gradient 

feedback. Experiments on the MNIST dataset 

demonstrate that A-STDP achieves 93.2% 

classification accuracy while consuming 38% less 

energy compared to standard ANN models. 

Furthermore, hardware simulations on Intel’s 

neuromorphic chip, Loihi, confirm the scalability 

and energy efficiency of the approach. This 

hybrid model presents a practical and biologically 

grounded step toward deploying high-

performance SNNs in real-world, low-power 

edge computing environments.  
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1. Introduction 

Spiking Neural Networks (SNNs) represent a 

paradigm shift in the field of artificial 

intelligence, offering a brain-inspired computing 

model that relies on discrete temporal events— 

 

spikes—for information processing. Unlike 

traditional Artificial Neural Networks (ANNs),  

which operate on continuous-valued activations 

and dense matrix operations, SNNs communicate 

through asynchronous spike trains, more closely 

mimicking the communication mechanisms of 

biological neurons. This results in inherently 

sparse and event-driven computation, which not 

only reduces redundant operations but also 

provides a significant advantage in terms of 

energy efficiency and real-time responsiveness. 

These properties make SNNs particularly 

attractive for deployment on neuromorphic 

hardware platforms such as Intel Loihi, IBM 

TrueNorth, and BrainScaleS, where spiking 

models can be leveraged to power ultra-low-

power edge devices, enabling always-on 

perception in applications like robotics, 

healthcare monitoring, and autonomous systems. 

Despite their theoretical advantages, SNNs are 

not yet widely adopted in mainstream AI 

pipelines primarily due to challenges in efficient 

training. The core difficulty lies in the non-

differentiable nature of spike generation, which 

prohibits the straightforward use of 

backpropagation—an algorithm that has been 

central to the success of deep learning. Classical 

SNN training methods such as Spike-Timing-

Dependent Plasticity (STDP) offer biological 

plausibility but typically lack the task-specific 

performance seen in gradient-trained ANNs. On 

the other hand, emerging surrogate gradient and 

ANN-to-SNN conversion techniques sacrifice 

biological inspiration for performance, limiting 

the potential of SNNs as autonomous learning 

agents. Consequently, there exists a critical gap 

between biological realism and task efficiency, 
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impeding the practical scalability of SNN-based 

AI systems. 

To bridge this gap, we propose a bio-hybrid 

learning framework that integrates biologically 

grounded learning with global optimization 

strategies to enhance both learning efficiency and 

computational viability. Specifically, we 

introduce Adaptive Spike-Timing-Dependent 

Plasticity (A-STDP)—a dynamic synaptic 

learning rule that combines the local nature of 

STDP with supervised gradient descent using 

surrogate functions. Our method enables SNNs to 

benefit from spike-timing correlations while still 

receiving top-down learning signals necessary for 

task-level optimization. Furthermore, we 

incorporate rate-based input encoding, realistic 

neuron models (such as Leaky Integrate-and-

Fire), and hardware-aware constraints to ensure 

compatibility with neuromorphic deployment. 

Through systematic experiments on the MNIST 

benchmark, our model achieves 93.2% accuracy 

with 38% lower energy consumption per 

inference compared to a comparable ANN 

baseline. These results demonstrate that hybrid 

learning can significantly enhance the 

performance of SNNs while preserving their 

energy-efficient and biologically faithful 

properties. 

In summary, our contributions pave the way 

toward scalable, low-power neuromorphic 

intelligence, providing a feasible and effective 

training mechanism that aligns with both 

neuroscience principles and modern AI 

performance requirements. 

 

2.Related Work 

Neftci et al. [1] introduced surrogate gradient 

methods to address the non-differentiability of 

spike functions in SNNs. By replacing the spike 

function’s gradient with a smooth approximation, 

they enabled the use of backpropagation in SNNs. 

This resulted in significant accuracy 

improvements on standard benchmarks. However, 

the method sacrifices biological plausibility and 

increases energy consumption during training due 

to dense computations. 

Bi and Poo [2] formulated the original Spike-

Timing-Dependent Plasticity (STDP) rule, 

highlighting the biological basis for local synaptic 

updates based on the timing of spikes. While 

STDP aligns well with how learning occurs in the 

brain, its unsupervised nature limits its 

effectiveness in achieving high accuracy for 

supervised classification tasks. 

Bellec et al. [3] proposed e-prop, a learning 

algorithm designed as a biologically inspired 

alternative to backpropagation through time 

(BPTT). The method uses eligibility traces and 

learning signals to update synaptic weights, 

making it compatible with online learning and 

more biologically grounded than conventional 

methods. However, its performance still trails 

behind that of surrogate gradient-trained SNNs on 

certain benchmarks. 

Davies et al. [4] introduced Intel’s Loihi, a 

neuromorphic processor that supports on-chip 

learning via programmable plasticity mechanisms 

such as STDP. Loihi demonstrates how hardware 

can implement biologically inspired learning 

rules efficiently, but it requires algorithms that are 

both local and hardware-aware to maximize 

performance and energy efficiency. 

Akopyan et al. [5] presented IBM’s TrueNorth, a 

neuromorphic chip designed for ultra-low-power 

inference using event-driven computation. While 

highly efficient, it lacks built-in support for 

learning and instead focuses on inference-only 

workloads, necessitating off-chip training and 

weight transfer methods. 

Schemmel et al. [6] developed BrainScaleS, a 

mixed-signal neuromorphic platform that 

accelerates spiking neuron dynamics in analog 

hardware. The system supports real-time 

emulation of neural networks and on-chip STDP, 

offering promising directions for brain-like 

computation but limited in scalability and 

precision. 

Rueckauer et al. [7] explored ANN-to-SNN 

conversion methods, transferring pre-trained 

weights from conventional neural networks to 

spiking counterparts. While this approach 

maintains classification accuracy, it detaches the 

training process from the temporal dynamics of 

spiking activity, creating inefficiencies and 

hardware mismatch during inference. 

Panda and Roy [8] proposed a hybrid training 

approach that blends STDP with gradient-based 

learning. Their framework leverages the local 

efficiency of STDP for unsupervised weight 

initialization, followed by supervised fine-tuning 
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via backpropagation. This method balances 

energy efficiency and accuracy but requires 

further optimization for neuromorphic 

deployment.  

 

Objectives 
The aim of this research is to extensively examine 

the diverse effects of digital media on child 

development by analysing the effects of excessive 

screen time on cognitive and emotional health, 

including related issues such as attention deficit, 

increased fear, and impaired social interactions. 

Furthermore, we examine how digital 

detoxification strategies can mitigate these 

conditions by improving the degree of fear, 

improving focus, and promoting sensible social 

interactions. Another focus is to understand the 

key roles of both parents and educational 

institutions in promoting an environment that 

promotes digital well-being, ensuring that 

children develop balanced habits of media 

consumption and simultaneously benefit from 

technological advancements The primary 

objective of this research is to develop a 

biologically plausible and computationally 

efficient learning framework for Spiking Neural 

Networks (SNNs) by integrating Spike-Timing-

Dependent Plasticity (STDP) with supervised 

backpropagation. This hybrid learning approach, 

termed Adaptive STDP (A-STDP), aims to 

address the long-standing trade-off between 

energy efficiency and classification accuracy in 

neuromorphic systems. The proposed method is 

designed to be hardware-aware and suitable for 

deployment on neuromorphic platforms such as 

Intel Loihi. By leveraging the local temporal 

sensitivity of STDP and the task-driven 

optimization of backpropagation, this work seeks 

to enable scalable, low-power, and high-accuracy 

SNNs suitable for real-time edge AI applications. 

Additionally, the research targets reproducibility, 

benchmarking, and validation through 

experiments on standard datasets like MNIST and 

N-MNIST, while exploring the energy-accuracy 

tradeoffs compared to conventional neural 

network architectures. 

 

3.Methodology 

This section outlines the hybrid learning 

framework designed for Spiking Neural Networks 

(SNNs), which fuses local Spike-Timing-

Dependent Plasticity (STDP) with global 

supervised backpropagation. The proposed 

Adaptive STDP (A-STDP) mechanism aims to 

achieve biologically plausible, energy-efficient 

learning without compromising classification 

accuracy. The methodology includes three main 

components: network architecture, hybrid 

learning rule, and hardware-aware training 

protocol.  

 

3.1 Network Architecture 

The SNN model consists of multiple fully 

connected layers of Leaky Integrate-and-Fire 

(LIF) neurons. These neurons mimic biological 

behavior through a membrane potential update 

rule and a thresholding mechanism for spike 

generation. The LIF neuron is described by the 

differential equation: 

 

        𝜏 
𝑑𝑢(𝑡)

𝑑𝑡
 =  −𝑢(𝑡)  +  𝐼 (𝑡) 

       (1) 

Where u(t) is the membrane potential, τ is the m 

embrane time constant, and I(t) is the input 

current at time t. A neuron fires a spike when u(t) 

exceeds a fixed threshold θ and its potential is 

subsequently reset. 

The architecture is implemented using SNNTorch 

on PyTorch 2.0 with CUDA acceleration. Each 

neuron maintains a plasticity coefficient to 

control weight updates through A-STDP. The 

spiking activity is propagated through 25 discrete 

time steps, using rate coding for input encoding. 

 

3.2 Network Architecture and Encoding 

The proposed spiking neural network (SNN) 

consists of an input layer, one or more hidden 

spiking layers, and an output layer designed to 

perform multi-class classification. The network 

utilizes Leaky Integrate-and-Fire (LIF) neurons in 

each layer, which accumulate input currents and 

emit spikes upon reaching a threshold. To 

maintain compatibility with neuromorphic 

processors such as Intel Loihi, the architecture 

emphasizes sparse connectivity and low-power 

computation. We employ rate coding to transform 

input pixels into spike trains, where the firing rate 

of each input neuron is proportional to the 

corresponding pixel intensity. For each input 
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sample, the network is simulated over T = 25 

discrete time steps to capture temporal dynamics. 

The hidden layers include recurrent connections 

in some configurations to model temporal 

dependencies, especially for datasets such as N-

MNIST that involve spatiotemporal patterns. All 

weights are initialized using He initialization 

tailored for sparse spiking activity. Batch 

normalization and dropout layers are avoided to 

preserve spike integrity, and instead, we adopt 

weight regularization techniques that are 

biologically plausible and hardware friendly. 

 

3.3 Hybrid Learning Rule 

The learning algorithm merges local unsupervised 

learning with global supervised feedback, by 

combining Spike-Timing Dependent Plasticity 

(STDP) and gradient-based backpropagation. The 

STDP mechanism updates synaptic weights based 

on the timing difference between pre- and post-

synaptic spikes. If a presynaptic neuron spikes 

shortly before a postsynaptic spike, the weight is 

strengthened (long-term potentiation); otherwise, 

it is weakened (long-term depression). This 

plasticity is biologically inspired and enables the 

network to autonomously discover patterns in the 

input. 

To address the limitations of pure STDP in 

solving classification tasks, we introduce a 

backpropagation component using surrogate 

gradient descent. Since SNNs are non-

differentiable due to their binary spike outputs, 

surrogate gradients are employed to approximate 

the gradient of the loss with respect to the 

membrane potential. We use the arctangent 

surrogate function for its smooth approximation 

and biological relevance. The total weight update 

is the sum of the local STDP update and the 

global backpropagation gradient, scaled by 

separate learning rates (η₁ and η₂ respectively). 

This hybrid learning rule allows the network to 

benefit from biologically realistic adaptation 

while achieving competitive task-level 

performance. 

 

3.4 Training Protocol 

The training protocol is designed with 

neuromorphic deployment in mind. Each input 

sample is propagated over 25 time steps. The 

output spike count is accumulated across time to 

compute the prediction vector. The loss function 

used is the temporal average of cross-entropy 

loss, which encourages consistent spiking 

behavior over time. Specifically, the model 

outputs at each time step are compared with the 

target labels, and the loss is averaged over the 

total simulation window. 

We use the Adam optimizer with an initial 

learning rate of 0.001 for the backpropagation 

component. The STDP learning rate is set to 0.01 

and decays over epochs to ensure convergence. 

During training, we monitor both spike sparsity 

and accuracy to prevent overfitting and to 

maintain power efficiency. The training is 

conducted using SNNTorch 0.9.4 on PyTorch 

2.0, with execution accelerated using CUDA 11.7 

on an NVIDIA A100 GPU. All experiments are 

reproducible and conform to standard SNN 

training protocols with fixed seeds and controlled 

batch sizes (128). 

 

3.5 Hardware-Aware Deployment 

Our methodology emphasizes compatibility with 

neuromorphic hardware such as Intel Loihi, 

which is optimized for asynchronous, spike-based 

processing. The network topology, learning rules, 

and execution schedule are all selected to comply 

with Loihi’s architectural constraints, including 

event-driven execution and local memory. We 

utilize Intel’s Lava software stack to map our 

PyTorch-trained models onto Loihi’s mesh of 

neuromorphic cores. To maximize energy 

efficiency, all computation is reduced to spike 

events and local memory transactions, 

eliminating the need for dense matrix 

multiplications typical in conventional GPUs. 

The hybrid learning rule is simulated offline, and 

the learned weights are transferred to Loihi for 

inference. During inference, only the spike-based 

feedforward pass is executed, ensuring extremely 

low power usage. Our results confirm that this 

approach not only reduces energy consumption 

but also preserves the accuracy of the model 

across datasets. 

 

4.Implementation 

4.1 Software Stack and  

Simulation Framework 

The hybrid learning model was implemented 

using PyTorch 2.0 as the core framework for deep 
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learning operations, extended with SNNTorch 

0.9.4 to support spiking neural dynamics and 

event-driven computations. SNNTorch provides 

built-in support for common spiking neuron 

models and surrogate gradient functions, enabling 

a seamless interface with PyTorch’s autograd 

engine. 

All experiments were conducted using CUDA 

11.7 on an NVIDIA A100 GPU, which 

significantly accelerated training involving spike-

based operations. For neuromorphic hardware 

deployment, the Intel Lava platform was utilized 

to translate the PyTorch-trained model into a 

Loihi-executable form. Lava's modular 

architecture allowed compatibility with the 

STDP-based plasticity engine of Loihi while 

preserving backpropagation-trained weights. 

 

 
 

Fig. 1: Complete software architechture for the 

hybrid learning model 

 

4.2 Network Architecture and  

Time-Based Simulation 

The neural network was constructed using Leaky 

Integrate-and-Fire (LIF) neurons with 

adjustable parameters for membrane decay 

(β=0.9) and firing threshold (θ=1.0). Neurons 

used the arctangent surrogate gradient for 

enabling backpropagation through discrete spike 

events. The architecture consisted of an input 

layer of 784 neurons (28×28 pixels), one hidden 

layer of 500 LIF neurons, and an output layer of 

10 neurons, corresponding to the MNIST digit 

classes. 

All computations were executed over 25 discrete 

time steps, simulating the temporal dynamics of 

biological neurons. The spikes from each layer 

were propagated forward and accumulated across 

time, with synaptic updates occurring in two 

ways: 

 Local STDP update during spike events 

 Global backpropagation update after time 

averaging of outputs 

The forward pass at each step calculated both the 

membrane potential and the spike output, 

storing previous activations for STDP-based 

learning. The backward pass used the time-

averaged spike counts to compute the cross-

entropy loss against true labels. 

 

4.3 Input Encoding and Data Preprocessing 

To interface static datasets with the spiking 

network, inputs were converted to temporal spike 

trains using rate coding. In this scheme, pixel 

intensities were normalized to [0,1] and treated as 

firing probabilities over 25 time steps. At each 

step, a Bernoulli sampling determined whether a 

spike was generated for each pixel. This 

probabilistic encoding simulates biological 

sensory neurons and allows training on both 

static (MNIST) and dynamic (N-MNIST) 

datasets. 

 

 
 

Fig. 2: Sample input spike trains generated using 

rate coding over 25 time steps for the digit '3'. 

 

4.4 Training Parameters and Learning Rates 

The training was conducted using the Adam 

optimizer with a base learning rate of 0.001 for 

the backpropagation component (η₂). The STDP 

component used an adaptive learning rate (η₁) 

starting at 0.01, which decayed logarithmically 

after each epoch to stabilize learning and prevent 

runaway weight updates. The STDP update was 

applied as a local Hebbian rule whenever two 

connected neurons spiked within a time window. 

Loss was computed as the average of 

CrossEntropy between the accumulated output 

spikes and true labels across all 25 time steps: 
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𝐿 =  
1

𝑇
 ∑ CrossEntropy

𝑇

𝑡=1

(𝑦𝑡 , 𝑦) 

Where T=25, 𝑦𝑡  is the network output at time t, 

and y is the ground truth label. 

The spike-based learning mechanism on Loihi 

supported local STDP natively, while the 

backpropagation weights (learned during offline 

training) were preserved for inference. Real-time 

inference tests showed that our hybrid-trained 

network operated with 38% lower energy 

consumption compared to an equivalent ANN 

model running on traditional hardware. 

 

5.Result and Discussion  

This section evaluates the performance of the 

proposed Bio-Hybrid learning model combining 

Adaptive STDP (A-STDP) with backpropagation 

on benchmark datasets, energy consumption, and 

robustness. The hybrid learning rule was 

implemented using SNNTorch and tested on both 

the standard MNIST and neuromorphic N-

MNIST datasets. The evaluation focuses on four 

metrics: classification accuracy, training 

efficiency, energy consumption per inference, and 

robustness to noise. 

The proposed model achieved an accuracy of 

98.05% on MNIST and 96.48% on N-MNIST, 

outperforming traditional STDP-only and 

surrogate-gradient (backpropagation-only) 

spiking models. Compared to the STDP-only 

model, which reached 91.20% on MNIST and 

88.40% on N-MNIST, the hybrid model 

demonstrated significantly improved 

generalization without losing biological 

plausibility. Table I summarizes the accuracy 

results across all models. 

 

Table I: Accuracy Comparison Across Learning 

Strategies 

 
Training Model MNIST 

Accuracy (%) 

N-MNIST 

Accuracy (%) 

STDP-only 91.20 88.40 

Surrogate Gradient 

(BP) 

97.50 95.20 

Hybrid (Ours) 98.05 96.48 

 

 

To further investigate convergence, we analyzed 

the training curves. Figure 4 illustrates the 

training accuracy progression over 30 epochs. 

The hybrid model reaches 95% accuracy by 

epoch 15, whereas STDP-only requires over 40 

epochs to reach 90%, reflecting faster 

convergence. The smooth gradient guidance 

accelerates learning while local STDP fine-tunes 

and stabilizes synaptic updates. 

 

 
 

Figure 3: Training Accuracy vs Epochs 

Energy efficiency was evaluated by deploying the 

trained models on the Intel Loihi neuromorphic 

chip and comparing their performance to 

conventional ANN and SNN implementations on 

an NVIDIA A100 GPU. The proposed hybrid 

model consumed 530 µJ per inference, compared 

to 1350 µJ for a dense ANN and 860 µJ for a 

surrogate SNN. This 38% energy reduction over 

SNNs and 60% over ANNs confirms the 

suitability of the proposed system for real-time, 

edge-AI applications. 

 

Table II: Energy Consumption per Inference 

 
Model Platform Energy/Image (µJ) 

ANN (ReLU 

MLP) 

NVIDIA A100 1350 

Surrogate SNN NVIDIA A100 860 

Hybrid SNN 

(Ours) 

Intel Loihi 530 

 

In addition, robustness was tested by injecting 

Gaussian noise (σ = 0.3) into the input test set. 

While the backpropagation-only model accuracy 

dropped from 97.5% to 88.4%, the hybrid model 

retained 91.6% accuracy, suggesting that the 
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STDP component acts as a noise filter, preserving 

essential temporal features in the spike trains. 

An ablation study was also conducted to 

determine the individual contributions of STDP 

and backpropagation. Disabling STDP resulted in 

a 1.7% performance drop, while removing 

backpropagation reduced accuracy by 5.3%, 

underscoring the significance of combining both. 

Figure 5 demonstrates spike raster plots across 

three learning strategies, showing that the hybrid 

model achieves structured firing patterns with 

higher temporal sparsity, contributing to both 

accuracy and energy savings. 

 

 
 

Fig. 4: Spike Raster Plot Comparison (STDP vs 

BP vs Hybrid) 

In summary, the hybrid learning model not only 

improved classification performance but also 

offered significant benefits in training efficiency 

and energy consumption. These results 

demonstrate its potential for real-world 

neuromorphic computing tasks where low power 

and high accuracy are critical. 
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