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Abstract

Spiking Neural Networks (SNNs) offer a
promising path toward energy-efficient, event-
driven computation inspired by the human brain.
However, conventional training approaches in
SNNs - such as unsupervised Spike-Timing-
Dependent Plasticity (STDP) and surrogate
gradient backpropagation—often face a trade-off
between biological plausibility and task-specific
performance. This paper introduces a novel bio-
hybrid learning framework that integrates local
STDP-based learning with global error-driven
backpropagation to overcome this limitation. The
proposed Adaptive STDP (A-STDP) algorithm
dynamically adjusts synaptic updates using both
temporal spike relationships and gradient
feedback. Experiments on the MNIST dataset
demonstrate that A-STDP achieves 93.2%
classification accuracy while consuming 38% less
energy compared to standard ANN models.
Furthermore, hardware simulations on Intel’s
neuromorphic chip, Loihi, confirm the scalability
and energy efficiency of the approach. This
hybrid model presents a practical and biologically
grounded step toward deploying high-
performance SNNs in real-world, low-power
edge computing environments.

Keywords: Spiking Neural Networks (SNNs),
STDP, Backpropagation, Hybrid Learning,
Neuromorphic Computing, Energy Efficiency,
Edge AL Intel Loihi, Bio-inspired Learning,
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1. Introduction

Spiking Neural Networks (SNNs) represent a
paradigm shift in the field of artificial
intelligence, offering a brain-inspired computing
model that relies on discrete temporal events—

spikes—for information processing. Unlike
traditional Artificial Neural Networks (ANNSs),
which operate on continuous-valued activations
and dense matrix operations, SNNs communicate
through asynchronous spike trains, more closely
mimicking the communication mechanisms of
biological neurons. This results in inherently
sparse and event-driven computation, which not
only reduces redundant operations but also
provides a significant advantage in terms of
energy efficiency and real-time responsiveness.
These properties make SNNs particularly
attractive for deployment on neuromorphic
hardware platforms such as Intel Loihi, IBM
TrueNorth, and BrainScaleS, where spiking
models can be leveraged to power ultra-low-
power edge devices, enabling always-on
perception in applications like robotics,
healthcare monitoring, and autonomous systems.
Despite their theoretical advantages, SNNs are
not yet widely adopted in mainstream Al
pipelines primarily due to challenges in efficient
training. The core difficulty lies in the non-
differentiable nature of spike generation, which
prohibits ~ the  straightforward  use  of
backpropagation—an algorithm that has been
central to the success of deep learning. Classical
SNN training methods such as Spike-Timing-
Dependent Plasticity (STDP) offer biological
plausibility but typically lack the task-specific
performance seen in gradient-trained ANNs. On
the other hand, emerging surrogate gradient and
ANN-to-SNN conversion techniques sacrifice
biological inspiration for performance, limiting
the potential of SNNs as autonomous learning
agents. Consequently, there exists a critical gap
between biological realism and task efficiency,
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impeding the practical scalability of SNN-based
Al systems.

To bridge this gap, we propose a bio-hybrid
learning framework that integrates biologically
grounded learning with global optimization
strategies to enhance both learning efficiency and

computational  viability.  Specifically, we
introduce  Adaptive  Spike-Timing-Dependent
Plasticity (A-STDP)—a dynamic synaptic

learning rule that combines the local nature of
STDP with supervised gradient descent using
surrogate functions. Our method enables SNNs to
benefit from spike-timing correlations while still
receiving top-down learning signals necessary for
task-level  optimization.  Furthermore, we
incorporate rate-based input encoding, realistic
neuron models (such as Leaky Integrate-and-
Fire), and hardware-aware constraints to ensure
compatibility with neuromorphic deployment.
Through systematic experiments on the MNIST
benchmark, our model achieves 93.2% accuracy
with 38% lower energy consumption per
inference compared to a comparable ANN
baseline. These results demonstrate that hybrid
learning  can  significantly  enhance the
performance of SNNs while preserving their
energy-efficient and  biologically  faithful
properties.

In summary, our contributions pave the way
toward scalable, low-power neuromorphic
intelligence, providing a feasible and effective
training mechanism that aligns with both
neuroscience  principles and modern Al
performance requirements.

2.Related Work

Neftci et al. [1] introduced surrogate gradient
methods to address the non-differentiability of
spike functions in SNNs. By replacing the spike
function’s gradient with a smooth approximation,
they enabled the use of backpropagation in SNNs.
This  resulted in  significant  accuracy
improvements on standard benchmarks. However,
the method sacrifices biological plausibility and
increases energy consumption during training due
to dense computations.

Bi and Poo [2] formulated the original Spike-
Timing-Dependent  Plasticity (STDP) rule,
highlighting the biological basis for local synaptic
updates based on the timing of spikes. While
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STDP aligns well with how learning occurs in the
brain, 1its unsupervised nature limits its
effectiveness in achieving high accuracy for
supervised classification tasks.

Bellec et al. [3] proposed e-prop, a learning
algorithm designed as a biologically inspired
alternative to backpropagation through time
(BPTT). The method uses eligibility traces and
learning signals to update synaptic weights,
making it compatible with online learning and
more biologically grounded than conventional
methods. However, its performance still trails
behind that of surrogate gradient-trained SNNs on
certain benchmarks.

Davies et al. [4] introduced Intel’s Loihi, a
neuromorphic processor that supports on-chip
learning via programmable plasticity mechanisms
such as STDP. Loihi demonstrates how hardware
can implement biologically inspired learning
rules efficiently, but it requires algorithms that are
both local and hardware-aware to maximize
performance and energy efficiency.

Akopyan et al. [5] presented IBM’s TrueNorth, a
neuromorphic chip designed for ultra-low-power
inference using event-driven computation. While
highly efficient, it lacks built-in support for
learning and instead focuses on inference-only
workloads, necessitating off-chip training and
weight transfer methods.

Schemmel et al. [6] developed BrainScaleS, a
mixed-signal  neuromorphic  platform  that
accelerates spiking neuron dynamics in analog
hardware. The system supports real-time
emulation of neural networks and on-chip STDP,
offering promising directions for brain-like
computation but limited in scalability and
precision.

Rueckauer et al. [7] explored ANN-to-SNN
conversion methods, transferring pre-trained
weights from conventional neural networks to
spiking counterparts. While this approach
maintains classification accuracy, it detaches the
training process from the temporal dynamics of
spiking activity, creating inefficiencies and
hardware mismatch during inference.

Panda and Roy [8] proposed a hybrid training
approach that blends STDP with gradient-based
learning. Their framework leverages the local
efficiency of STDP for unsupervised weight
initialization, followed by supervised fine-tuning
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via backpropagation. This method balances
energy efficiency and accuracy but requires
further optimization for  neuromorphic
deployment.

Objectives

The aim of this research is to extensively examine
the diverse effects of digital media on child
development by analysing the effects of excessive
screen time on cognitive and emotional health,
including related issues such as attention deficit,
increased fear, and impaired social interactions.
Furthermore, we examine how  digital
detoxification strategies can mitigate these
conditions by improving the degree of fear,
improving focus, and promoting sensible social
interactions. Another focus is to understand the
key roles of both parents and educational
institutions in promoting an environment that
promotes digital well-being, ensuring that
children develop balanced habits of media
consumption and simultaneously benefit from
technological advancements The primary
objective of this research is to develop a
biologically plausible and computationally
efficient learning framework for Spiking Neural
Networks (SNNs) by integrating Spike-Timing-
Dependent Plasticity (STDP) with supervised
backpropagation. This hybrid learning approach,
termed Adaptive STDP (A-STDP), aims to
address the long-standing trade-off between
energy efficiency and classification accuracy in
neuromorphic systems. The proposed method is
designed to be hardware-aware and suitable for
deployment on neuromorphic platforms such as
Intel Loihi. By leveraging the local temporal
sensitivity of STDP and the task-driven
optimization of backpropagation, this work seeks
to enable scalable, low-power, and high-accuracy
SNNs suitable for real-time edge Al applications.
Additionally, the research targets reproducibility,
benchmarking, and validation through
experiments on standard datasets like MNIST and
N-MNIST, while exploring the energy-accuracy
tradeoffs compared to conventional neural
network architectures.

3.Methodology

This section outlines the hybrid learning
framework designed for Spiking Neural Networks
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(SNNs), which fuses local Spike-Timing-
Dependent Plasticity (STDP) with global
supervised  backpropagation. The proposed
Adaptive STDP (A-STDP) mechanism aims to
achieve biologically plausible, energy-efficient
learning without compromising classification
accuracy. The methodology includes three main
components: network architecture, hybrid
learning rule, and hardware-aware training
protocol.

3.1 Network Architecture

The SNN model consists of multiple fully
connected layers of Leaky Integrate-and-Fire
(LIF) neurons. These neurons mimic biological
behavior through a membrane potential update
rule and a thresholding mechanism for spike
generation. The LIF neuron is described by the
differential equation:

du(t)
== = —u() +1(1)

(1)

Where u(t) is the membrane potential, t is the m
embrane time constant, and I(t) is the input
current at time t. A neuron fires a spike when u(t)
exceeds a fixed threshold 0 and its potential is
subsequently reset.

The architecture is implemented using SNNTorch
on PyTorch 2.0 with CUDA acceleration. Each
neuron maintains a plasticity coefficient to
control weight updates through A-STDP. The
spiking activity is propagated through 25 discrete
time steps, using rate coding for input encoding.

3.2 Network Architecture and Encoding

The proposed spiking neural network (SNN)
consists of an input layer, one or more hidden
spiking layers, and an output layer designed to
perform multi-class classification. The network
utilizes Leaky Integrate-and-Fire (LIF) neurons in
each layer, which accumulate input currents and
emit spikes upon reaching a threshold. To
maintain  compatibility ~with  neuromorphic
processors such as Intel Loihi, the architecture
emphasizes sparse connectivity and low-power
computation. We employ rate coding to transform
input pixels into spike trains, where the firing rate
of each input neuron is proportional to the
corresponding pixel intensity. For each input

www.ijmsrt.com 34

DOI; https://doi.org/10.5281/zenod0.18266369



http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.18266369

Volume-4-Issue-1-January,2026

sample, the network is simulated over T = 25
discrete time steps to capture temporal dynamics.
The hidden layers include recurrent connections
in some configurations to model temporal
dependencies, especially for datasets such as N-
MNIST that involve spatiotemporal patterns. All
weights are initialized using He initialization
tailored for sparse spiking activity. Batch
normalization and dropout layers are avoided to
preserve spike integrity, and instead, we adopt
weight regularization techniques that are
biologically plausible and hardware friendly.

3.3 Hybrid Learning Rule

The learning algorithm merges local unsupervised
learning with global supervised feedback, by
combining Spike-Timing Dependent Plasticity
(STDP) and gradient-based backpropagation. The
STDP mechanism updates synaptic weights based
on the timing difference between pre- and post-
synaptic spikes. If a presynaptic neuron spikes
shortly before a postsynaptic spike, the weight is
strengthened (long-term potentiation); otherwise,
it is weakened (long-term depression). This
plasticity is biologically inspired and enables the
network to autonomously discover patterns in the
input.

To address the limitations of pure STDP in
solving classification tasks, we introduce a
backpropagation component using surrogate
gradient descent. Since SNNs are non-
differentiable due to their binary spike outputs,
surrogate gradients are employed to approximate
the gradient of the loss with respect to the
membrane potential. We use the arctangent
surrogate function for its smooth approximation
and biological relevance. The total weight update
is the sum of the local STDP update and the
global backpropagation gradient, scaled by
separate learning rates (1 and m: respectively).
This hybrid learning rule allows the network to
benefit from biologically realistic adaptation
while  achieving  competitive  task-level
performance.

3.4 Training Protocol

The training protocol is designed with
neuromorphic deployment in mind. Each input
sample is propagated over 25 time steps. The
output spike count is accumulated across time to
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compute the prediction vector. The loss function
used is the temporal average of cross-entropy
loss, which encourages consistent spiking
behavior over time. Specifically, the model
outputs at each time step are compared with the
target labels, and the loss is averaged over the
total simulation window.

We use the Adam optimizer with an initial
learning rate of 0.001 for the backpropagation
component. The STDP learning rate is set to 0.01
and decays over epochs to ensure convergence.
During training, we monitor both spike sparsity
and accuracy to prevent overfitting and to
maintain power efficiency. The training is
conducted using SNNTorch 0.9.4 on PyTorch
2.0, with execution accelerated using CUDA 11.7
on an NVIDIA A100 GPU. All experiments are
reproducible and conform to standard SNN
training protocols with fixed seeds and controlled
batch sizes (128).

3.5 Hardware-Aware Deployment

Our methodology emphasizes compatibility with
neuromorphic hardware such as Intel Loihi,
which is optimized for asynchronous, spike-based
processing. The network topology, learning rules,
and execution schedule are all selected to comply
with Loihi’s architectural constraints, including
event-driven execution and local memory. We
utilize Intel’s Lava software stack to map our
PyTorch-trained models onto Loihi’s mesh of
neuromorphic cores. To maximize energy
efficiency, all computation is reduced to spike
events and local memory transactions,
eliminating the need for dense matrix
multiplications typical in conventional GPUs.

The hybrid learning rule is simulated offline, and
the learned weights are transferred to Loihi for
inference. During inference, only the spike-based
feedforward pass is executed, ensuring extremely
low power usage. Our results confirm that this
approach not only reduces energy consumption
but also preserves the accuracy of the model
across datasets.

4.Implementation

4.1 Software Stack and

Simulation Framework

The hybrid learning model was implemented
using PyTorch 2.0 as the core framework for deep
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learning operations, extended with SNNTorch
0.9.4 to support spiking neural dynamics and
event-driven computations. SNNTorch provides
built-in support for common spiking neuron
models and surrogate gradient functions, enabling
a seamless interface with PyTorch’s autograd
engine.

All experiments were conducted using CUDA
117 on an NVIDIA A100 GPU, which
significantly accelerated training involving spike-
based operations. For neuromorphic hardware
deployment, the Intel Lava platform was utilized
to translate the PyTorch-trained model into a
Loihi-executable  form. Lava's  modular
architecture allowed compatibility with the
STDP-based plasticity engine of Loihi while
preserving backpropagation-trained weights.

Simufiation Moge! Traning Neuramorph

Deployment

—,

‘ SNNToroh " Trained Mode! —— Imiel Lava

Rate Encoting

PR ST,
Hybnd Leaming
(STDP+Zadqgrop)

re————
Trarsd Model

AR -

re=t Lod ‘

Fig. 1: Complete software architechture for the
hybrid learning model

4.2 Network Architecture and

Time-Based Simulation

The neural network was constructed using Leaky
Integrate-and-Fire = (LIF) neurons  with
adjustable parameters for membrane decay
(B=0.9) and firing threshold (6=1.0). Neurons
used the arctangent surrogate gradient for
enabling backpropagation through discrete spike
events. The architecture consisted of an input
layer of 784 neurons (28%28 pixels), one hidden
layer of 500 LIF neurons, and an output layer of
10 neurons, corresponding to the MNIST digit
classes.

All computations were executed over 25 discrete
time steps, simulating the temporal dynamics of
biological neurons. The spikes from each layer
were propagated forward and accumulated across
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time, with synaptic updates occurring in two
ways:

e Local STDP update during spike events

e Global backpropagation update after time
averaging of outputs

The forward pass at each step calculated both the
membrane potential and the spike output,
storing previous activations for STDP-based
learning. The backward pass used the time-
averaged spike counts to compute the cross-
entropy loss against true labels.

4.3 Input Encoding and Data Preprocessing

To interface static datasets with the spiking
network, inputs were converted to temporal spike
trains using rate coding. In this scheme, pixel
intensities were normalized to [0,1] and treated as
firing probabilities over 25 time steps. At each
step, a Bernoulli sampling determined whether a
spike was generated for each pixel. This
probabilistic  encoding simulates biological
sensory neurons and allows training on both
static (MNIST) and dynamic (N-MNIST)
datasets.

Fig. 2: Sample input spike trains generated using
rate coding over 25 time steps for the digit '3'.

4.4 Training Parameters and Learning Rates
The training was conducted using the Adam
optimizer with a base learning rate of 0.001 for
the backpropagation component (12). The STDP
component used an adaptive learning rate (n:)
starting at 0.01, which decayed logarithmically
after each epoch to stabilize learning and prevent
runaway weight updates. The STDP update was
applied as a local Hebbian rule whenever two
connected neurons spiked within a time window.
Loss was computed as the average of
CrossEntropy between the accumulated output
spikes and true labels across all 25 time steps:
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T
L= % Z CrossEntropy (v;,y)
t=1

Where T=25, y, is the network output at time t,
and y is the ground truth label.

The spike-based learning mechanism on Loihi
supported local STDP natively, while the
backpropagation weights (learned during offline
training) were preserved for inference. Real-time
inference tests showed that our hybrid-trained
network operated with 38% lower energy
consumption compared to an equivalent ANN
model running on traditional hardware.

S.Result and Discussion

This section evaluates the performance of the
proposed Bio-Hybrid learning model combining
Adaptive STDP (A-STDP) with backpropagation
on benchmark datasets, energy consumption, and
robustness. The hybrid learning rule was
implemented using SNNTorch and tested on both
the standard MNIST and neuromorphic N-
MNIST datasets. The evaluation focuses on four
metrics:  classification  accuracy, training
efficiency, energy consumption per inference, and
robustness to noise.

The proposed model achieved an accuracy of
98.05% on MNIST and 96.48% on N-MNIST,
outperforming  traditional STDP-only and
surrogate-gradient (backpropagation-only)
spiking models. Compared to the STDP-only
model, which reached 91.20% on MNIST and

88.40% on N-MNIST, the hybrid model
demonstrated significantly improved
generalization ~ without  losing  biological

plausibility. Table I summarizes the accuracy
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To further investigate convergence, we analyzed
the training curves. Figure 4 illustrates the
training accuracy progression over 30 epochs.
The hybrid model reaches 95% accuracy by
epoch 15, whereas STDP-only requires over 40
epochs to reach 90%, reflecting faster
convergence. The smooth gradient guidance
accelerates learning while local STDP fine-tunes
and stabilizes synaptic updates.

Figure 3: Training Accuracy vs Epochs

Energy efficiency was evaluated by deploying the
trained models on the Intel Loihi neuromorphic
chip and comparing their performance to
conventional ANN and SNN implementations on
an NVIDIA A100 GPU. The proposed hybrid
model consumed 530 pJ per inference, compared
to 1350 pJ for a dense ANN and 860 pJ for a
surrogate SNN. This 38% energy reduction over
SNNs and 60% over ANNs confirms the
suitability of the proposed system for real-time,
edge-Al applications.

Table II: Energy Consumption per Inference

results across all models. Model Platform Energy/Image (nJ)
Table I: Accuracy Comparison Across Learning
Strategies ANN (ReLU | NVIDIA A100 1350
MLP)
Training Model MNIST N-MNIST Surrogate SNN NVIDIA A100 860
Accuracy (%) Accuracy (%)
Hybrid SNN | Intel Loihi 530
STDP-only 91.20 88.40 (Ours)
Surrogate  Gradient 97.50 95.20 o o
(BP) In addition, robustness was tested by injecting
Gaussian noise (6 = 0.3) into the input test set.
Hybrid (Ours) 98.05 96.48 While the backpropagation-only model accuracy
dropped from 97.5% to 88.4%, the hybrid model
retained 91.6% accuracy, suggesting that the
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STDP component acts as a noise filter, preserving
essential temporal features in the spike trains.

An ablation study was also conducted to
determine the individual contributions of STDP
and backpropagation. Disabling STDP resulted in
a 1.7% performance drop, while removing
backpropagation reduced accuracy by 5.3%,
underscoring the significance of combining both.
Figure 5 demonstrates spike raster plots across
three learning strategies, showing that the hybrid
model achieves structured firing patterns with
higher temporal sparsity, contributing to both
accuracy and energy savings.

Fig. 4: Spike Raster Plot Comparison (STDP vs
BP vs Hybrid)

In summary, the hybrid learning model not only
improved classification performance but also
offered significant benefits in training efficiency
and energy consumption. These results
demonstrate its potential for real-world
neuromorphic computing tasks where low power
and high accuracy are critical.
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